001008188 001__ 1008188
001008188 005__ 20240712101002.0
001008188 0247_ $$2doi$$a10.5194/acp-2022-803
001008188 0247_ $$2Handle$$a2128/34499
001008188 037__ $$aFZJ-2023-02234
001008188 1001_ $$0P:(DE-HGF)0$$aLuo, Hao$$b0
001008188 245__ $$aFormation of highly oxygenated organic molecules from the oxidation of limonene by OH radical: significant contribution of H-abstraction pathway
001008188 260__ $$c2022
001008188 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1685963496_6428
001008188 3367_ $$2ORCID$$aWORKING_PAPER
001008188 3367_ $$028$$2EndNote$$aElectronic Article
001008188 3367_ $$2DRIVER$$apreprint
001008188 3367_ $$2BibTeX$$aARTICLE
001008188 3367_ $$2DataCite$$aOutput Types/Working Paper
001008188 520__ $$aHighly oxygenated organic molecules (HOM) play a pivotal role in the formation of secondary organic aerosol (SOA). Therefore, the distribution and yields of HOM are fundamental to understand their fate and chemical evolution in the atmosphere, and it is conducive to ultimately assess the impact of SOA on air quality and climate change. In this study, gas-phase HOM formed from the reaction of limonene with OH radical in photooxidation were investigated in the SAPHIR chamber (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) using a time-of-flight chemical ionization mass spectrometer with nitrate reagent ion (NO3−-CIMS). A large number of HOM, including monomers (C9–10) and dimers (C17–20), were detected and classified into various families. Both closed-shell products and open-shell peroxy radicals (RO2), were identified under low NO (0.1 ppt–~0.2 ppb) and high NO conditions (17 ppb). C10 monomers are the most abundant HOM products and account for over 80 % total HOM. Closed-shell C10 monomers were formed from two peroxy radical familie, C10H15Ox•(x=7–12) and C10H17Ox•(x=8–13), and their respective termination reactions with NO, RO2, and HO2. While C10H17Ox• is likely formed by OH addition to C10H16, the dominant initial step of limonene+OH, C10H15Ox•, is likely formed via H-abstraction by OH. C10H15Ox• and related products contributed 43 % and 46 % of C10-HOM at low and high NO, demonstrating that H-abstraction pathways play a significant role in HOM formation in the reaction of limonene+OH. Combining theoretical kinetic calculations, structure activity relationships (SARs), literature data, and the observed RO2 intensities, we proposed tentative mechanisms of HOM formation from both pathways. We further estimated the molar yields of HOM to be 3.04−1.64+3.89 % and 0.82−0.44+1.05 % at low and high NO, respectively. Our study highlights the importance of H-abstraction by OH and provides yield and tentative pathways in the OH oxidation of limonene to simulate the HOM formation and assess their role in SOA formation.
001008188 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001008188 588__ $$aDataset connected to CrossRef
001008188 7001_ $$0P:(DE-Juel1)167140$$aVereecken, Luc$$b1$$ufzj
001008188 7001_ $$0P:(DE-Juel1)184426$$aShen, Hongru$$b2
001008188 7001_ $$0P:(DE-Juel1)169671$$aKang, Sungah$$b3
001008188 7001_ $$0P:(DE-Juel1)156385$$aPullinen, Iida$$b4
001008188 7001_ $$0P:(DE-HGF)0$$aHallquist, Mattias$$b5
001008188 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b6$$ufzj
001008188 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b7
001008188 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b8
001008188 7001_ $$0P:(DE-Juel1)16346$$aMentel, Thomas F.$$b9$$eCorresponding author$$ufzj
001008188 7001_ $$0P:(DE-Juel1)136801$$aZhao, Defeng$$b10$$eCorresponding author
001008188 773__ $$a10.5194/acp-2022-803
001008188 8564_ $$uhttps://juser.fz-juelich.de/record/1008188/files/acp-2022-803.pdf$$yOpenAccess
001008188 909CO $$ooai:juser.fz-juelich.de:1008188$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001008188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167140$$aForschungszentrum Jülich$$b1$$kFZJ
001008188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169671$$aForschungszentrum Jülich$$b3$$kFZJ
001008188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b6$$kFZJ
001008188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b7$$kFZJ
001008188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich$$b9$$kFZJ
001008188 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001008188 9141_ $$y2023
001008188 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008188 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008188 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
001008188 9801_ $$aFullTexts
001008188 980__ $$apreprint
001008188 980__ $$aVDB
001008188 980__ $$aUNRESTRICTED
001008188 980__ $$aI:(DE-Juel1)IEK-8-20101013
001008188 981__ $$aI:(DE-Juel1)ICE-3-20101013