001008191 001__ 1008191
001008191 005__ 20230929112533.0
001008191 0247_ $$2doi$$a10.1002/pamm.202200244
001008191 0247_ $$2Handle$$a2128/34500
001008191 037__ $$aFZJ-2023-02237
001008191 082__ $$a510
001008191 1001_ $$0P:(DE-Juel1)186856$$aStrobl, Rachel$$b0$$eCorresponding author$$ufzj
001008191 245__ $$aDislocation Motion Induced by Thermally Driven Phase Transformations
001008191 260__ $$aWeinheim$$bWiley-VCH$$c2023
001008191 3367_ $$2DRIVER$$aarticle
001008191 3367_ $$2DataCite$$aOutput Types/Journal article
001008191 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1685963978_6428
001008191 3367_ $$2BibTeX$$aARTICLE
001008191 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008191 3367_ $$00$$2EndNote$$aJournal Article
001008191 520__ $$aThe interaction of dislocations with phase boundaries is an interesting aspect of the interplay between phase transformation and plasticity at the nano-scale. We capture this interaction within a phase field framework coupled to discrete dislocation dynamics. In order to regularize the stress and driving force for phase evolution at the dislocation core, a first strain-gradient elasticity approach is used, which leads to more physical, discretization-independent numerical solutions.From a mathematical point of view, this results in a system of coupled partial differential equations (PDEs) and ordinary differential equations (ODEs). The PDEs include an equation analogous to the balance of linear momentum, a second-order tensor-valued Helmholtz-type equation for the true stress as well as a time-dependent Ginzburg-Landau equation for the evolution of the phase field. The ODEs are the equations of motion of the dislocations. The dislocations are modeled as lamellae with eigenstrain that can evolve with time; the resulting stress field is an outcome of the numerical solution. A parallel framework was developed in order to solve these coupled dynamics problems using the finite element library FEniCS. We show the effect of dislocations on phase microstructure as well as the influence of phase microstructure on the motion of dislocations using an illustrative example of a thermally-driven planar phase boundary, and its interaction with a single edge dislocation.
001008191 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001008191 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008191 7001_ $$0P:(DE-Juel1)186706$$aBudnitzki, Michael$$b1$$ufzj
001008191 7001_ $$0P:(DE-Juel1)186075$$aSandfeld, Stefan$$b2$$ufzj
001008191 773__ $$0PERI:(DE-600)2078931-2$$a10.1002/pamm.202200244$$gVol. 23, no. 1, p. e202200244$$n1$$pe202200244$$tProceedings in applied mathematics and mechanics$$v23$$x1617-7061$$y2023
001008191 8564_ $$uhttps://juser.fz-juelich.de/record/1008191/files/Proc%20Appl%20Math%20Mech%20-%202023%20-%20Strobl%20-%20Dislocation%20Motion%20Induced%20by%20Thermally%20Driven%20Phase%20Transformations.pdf$$yOpenAccess
001008191 8767_ $$d2023-06-26$$eHybrid-OA$$jDEAL
001008191 909CO $$ooai:juser.fz-juelich.de:1008191$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001008191 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186856$$aForschungszentrum Jülich$$b0$$kFZJ
001008191 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186706$$aForschungszentrum Jülich$$b1$$kFZJ
001008191 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186075$$aForschungszentrum Jülich$$b2$$kFZJ
001008191 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001008191 9141_ $$y2023
001008191 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008191 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001008191 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001008191 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001008191 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001008191 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-30$$wger
001008191 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008191 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
001008191 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-29
001008191 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-29
001008191 920__ $$lyes
001008191 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x0
001008191 9801_ $$aFullTexts
001008191 980__ $$ajournal
001008191 980__ $$aVDB
001008191 980__ $$aUNRESTRICTED
001008191 980__ $$aI:(DE-Juel1)IAS-9-20201008
001008191 980__ $$aAPC