001     1008191
005     20230929112533.0
024 7 _ |a 10.1002/pamm.202200244
|2 doi
024 7 _ |a 2128/34500
|2 Handle
037 _ _ |a FZJ-2023-02237
082 _ _ |a 510
100 1 _ |a Strobl, Rachel
|0 P:(DE-Juel1)186856
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Dislocation Motion Induced by Thermally Driven Phase Transformations
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1685963978_6428
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interaction of dislocations with phase boundaries is an interesting aspect of the interplay between phase transformation and plasticity at the nano-scale. We capture this interaction within a phase field framework coupled to discrete dislocation dynamics. In order to regularize the stress and driving force for phase evolution at the dislocation core, a first strain-gradient elasticity approach is used, which leads to more physical, discretization-independent numerical solutions.From a mathematical point of view, this results in a system of coupled partial differential equations (PDEs) and ordinary differential equations (ODEs). The PDEs include an equation analogous to the balance of linear momentum, a second-order tensor-valued Helmholtz-type equation for the true stress as well as a time-dependent Ginzburg-Landau equation for the evolution of the phase field. The ODEs are the equations of motion of the dislocations. The dislocations are modeled as lamellae with eigenstrain that can evolve with time; the resulting stress field is an outcome of the numerical solution. A parallel framework was developed in order to solve these coupled dynamics problems using the finite element library FEniCS. We show the effect of dislocations on phase microstructure as well as the influence of phase microstructure on the motion of dislocations using an illustrative example of a thermally-driven planar phase boundary, and its interaction with a single edge dislocation.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Budnitzki, Michael
|0 P:(DE-Juel1)186706
|b 1
|u fzj
700 1 _ |a Sandfeld, Stefan
|0 P:(DE-Juel1)186075
|b 2
|u fzj
773 _ _ |a 10.1002/pamm.202200244
|g Vol. 23, no. 1, p. e202200244
|0 PERI:(DE-600)2078931-2
|n 1
|p e202200244
|t Proceedings in applied mathematics and mechanics
|v 23
|y 2023
|x 1617-7061
856 4 _ |u https://juser.fz-juelich.de/record/1008191/files/Proc%20Appl%20Math%20Mech%20-%202023%20-%20Strobl%20-%20Dislocation%20Motion%20Induced%20by%20Thermally%20Driven%20Phase%20Transformations.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1008191
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)186706
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186075
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-30
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21