001008197 001__ 1008197
001008197 005__ 20231027114406.0
001008197 0247_ $$2doi$$a10.1063/5.0138512
001008197 0247_ $$2ISSN$$a0034-6748
001008197 0247_ $$2ISSN$$a1527-2400
001008197 0247_ $$2ISSN$$a1089-7623
001008197 0247_ $$2Handle$$a2128/34498
001008197 0247_ $$2WOS$$aWOS:000978948200002
001008197 037__ $$aFZJ-2023-02243
001008197 082__ $$a620
001008197 1001_ $$0P:(DE-Juel1)128768$$aIbach, Harald$$b0
001008197 245__ $$aA novel high-current, high-resolution, low-kinetic-energy electron source for inverse photoemission spectroscopy
001008197 260__ $$a[Erscheinungsort nicht ermittelbar]$$bAmerican Institute of Physics$$c2023
001008197 3367_ $$2DRIVER$$aarticle
001008197 3367_ $$2DataCite$$aOutput Types/Journal article
001008197 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1685963370_2995
001008197 3367_ $$2BibTeX$$aARTICLE
001008197 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008197 3367_ $$00$$2EndNote$$aJournal Article
001008197 520__ $$aA high-current electron source for inverse photoemission spectroscopy is described. The source comprises a thermal cathode electron emission system, an electrostatic deflector-monochromator, and a lens system for variable kinetic energy (1.6–20 eV) at the target. When scaled to the energy resolution, the electron current is an order of magnitude higher than that of previously described electron sources developed in the context of electron energy loss spectroscopy. Surprisingly, the experimentally measured energy resolution turned out to be significantly better than calculated by standard programs, which include the electron–electron repulsion in the continuum approximation. The achieved currents are also significantly higher than predicted. We attribute this “inverse Boersch-effect” to a mechanism of velocity selection in the forward direction by binary electron–electron collisions.
001008197 536__ $$0G:(DE-HGF)POF4-5213$$a5213 - Quantum Nanoscience (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001008197 536__ $$0G:(GEPRIS)396769409$$aDFG project 396769409 - Grundlagen der Photoemissionstomographie $$c396769409$$x1
001008197 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008197 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b1
001008197 7001_ $$0P:(DE-Juel1)167128$$aBocquet, François C.$$b2
001008197 773__ $$0PERI:(DE-600)1472905-2$$a10.1063/5.0138512$$gVol. 94, no. 4, p. 043908$$n4$$p043908$$tReview of scientific instruments$$v94$$x0034-6748$$y2023
001008197 8564_ $$uhttps://juser.fz-juelich.de/record/1008197/files/2212.05608.pdf$$yOpenAccess
001008197 8767_ $$d2023-09-22$$eHybrid-OA$$jPublish and Read$$znachträgliche Open Access Stellung
001008197 909CO $$ooai:juser.fz-juelich.de:1008197$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001008197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128768$$aForschungszentrum Jülich$$b0$$kFZJ
001008197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b1$$kFZJ
001008197 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167128$$aForschungszentrum Jülich$$b2$$kFZJ
001008197 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5213$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001008197 9141_ $$y2023
001008197 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008197 915pc $$0PC:(DE-HGF)0102$$2APC$$aTIB: AIP Publishing 2021
001008197 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-08
001008197 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-08
001008197 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008197 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-21$$wger
001008197 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001008197 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
001008197 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001008197 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001008197 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
001008197 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001008197 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREV SCI INSTRUM : 2022$$d2023-10-21
001008197 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001008197 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001008197 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001008197 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
001008197 920__ $$lyes
001008197 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
001008197 9801_ $$aFullTexts
001008197 980__ $$ajournal
001008197 980__ $$aVDB
001008197 980__ $$aUNRESTRICTED
001008197 980__ $$aI:(DE-Juel1)PGI-3-20110106
001008197 980__ $$aAPC