001008203 001__ 1008203
001008203 005__ 20250129094237.0
001008203 0247_ $$2Handle$$a2128/34507
001008203 037__ $$aFZJ-2023-02249
001008203 041__ $$aEnglish
001008203 1001_ $$0P:(DE-Juel1)130917$$aRichter, Dieter$$b0$$ufzj
001008203 1112_ $$aFlagship Workshop Ring Polymer Dynamics$$cMonash University Prato Centre$$d2023-06-14 - 2023-06-16$$wItaly
001008203 245__ $$aOn the dynamics of large ring polymers in the melt - a SANS, neutron spin echo and PFG - NMR study
001008203 260__ $$c2023
001008203 3367_ $$033$$2EndNote$$aConference Paper
001008203 3367_ $$2DataCite$$aOther
001008203 3367_ $$2BibTeX$$aINPROCEEDINGS
001008203 3367_ $$2DRIVER$$aconferenceObject
001008203 3367_ $$2ORCID$$aLECTURE_SPEECH
001008203 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1686032031_21405$$xInvited
001008203 520__ $$aThe non-crossing requirement in non-concatenated ring polymers creates topological constraints, which impose important restrictions on the phase space of the system. For ring polymers interpenetration is costly entropically and compact structures evolve for high molecular weights - ring polymers are assumed to become mass fractals confining rings into territories. Other than the dynamics of linear or branched chains that predominantly takes place via the chain ends, rings do not feature ends and their dynamics is considered to be self-similar and thus fundamentally different to those of chains displaying ends. The present state of the art model for the description of the internal relaxations in dense ring systems was developed by Rubinstein et al. /1/. This self-consistent Fractal Loopy Globule (FLG) model is based on the conjecture that the overlap criterion /2,3/ in the packing model for entanglements also governs the rule for overlapping loops in polymer rings. The constant overlap of loops is conjectured to occur in a self-similar way over a wide range of length scales from the elementary loop size Ne up to ring size R. The dynamics of such rings in a melt is governed by topological constraints that dilute with progressing time, because with time loops of increasing sizes are relaxed and cease to be obstacles.Recently, combining results of SANS /4/ with PFG- NMR and NSE the unique topology driven self-similar internal ring dynamics predicted by the FLG model could be verified experimentally /5/: We find the center of mass diffusion taking place in three dynamic regimes from short to long times: (i) a strongly sub-diffusive regime, where the center-of-mass mean square displacement scales as t^\alpha (0.4 ≤ \alpha ≤ 0.6) , until it reaches roughly the value R_g^2; (ii) a second regime with a t^0.75 scaling that (iii) at roughly 2.5 R_g^2 crosses over to Fickian diffusion. While the second anomalous diffusion regime has been found in simulations and was predicted by theory, we attribute the first one to the effect of cooperative dynamics resulting from the correlation hole potential. The internal dynamics at scales below the elementary loop size is well described by ring Rouse motion. At larger scales the dynamics is self-similar and follows very well the predictions of the scaling models with preference for the FLG model.ReferencesReferences:1. T. Ge, S. Panyukov, and M. Rubinstein, Macromolecules 49, 708–722 (2016)2. T. A. Kavassalis and J. Noolandi, Macromolecules 22, 2709–2720 (1989)3. L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, Macromolecules (1994)4. M. Kruteva, J. Allgaier, M. Monkenbusch, L. Porcar, and D. Richter, ACS Macro Letters , 507–511 (2020)5. M. Kruteva,M. Monkenbusch, J. Allgaier, O. Holderer, S. Pasini, I. Hofmann and D. Richter, Phys. Rev. Lett. (2020)
001008203 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001008203 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001008203 7001_ $$0P:(DE-Juel1)130501$$aAllgaier, J.$$b1$$ufzj
001008203 7001_ $$0P:(DE-Juel1)130849$$aMonkenbusch, Michael$$b2$$ufzj
001008203 7001_ $$0P:(DE-Juel1)130777$$aKruteva, Margarita$$b3$$ufzj
001008203 8564_ $$uhttps://juser.fz-juelich.de/record/1008203/files/richter-abstract.pdf$$yOpenAccess
001008203 909CO $$ooai:juser.fz-juelich.de:1008203$$pdriver$$pVDB$$popen_access$$popenaire
001008203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130917$$aForschungszentrum Jülich$$b0$$kFZJ
001008203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130501$$aForschungszentrum Jülich$$b1$$kFZJ
001008203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130849$$aForschungszentrum Jülich$$b2$$kFZJ
001008203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130777$$aForschungszentrum Jülich$$b3$$kFZJ
001008203 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001008203 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001008203 9141_ $$y2023
001008203 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008203 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001008203 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
001008203 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001008203 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x3
001008203 9801_ $$aFullTexts
001008203 980__ $$aconf
001008203 980__ $$aVDB
001008203 980__ $$aUNRESTRICTED
001008203 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001008203 980__ $$aI:(DE-Juel1)PGI-4-20110106
001008203 980__ $$aI:(DE-82)080009_20140620
001008203 980__ $$aI:(DE-Juel1)JCNS-1-20110106
001008203 981__ $$aI:(DE-Juel1)JCNS-2-20110106