001008217 001__ 1008217
001008217 005__ 20250129094237.0
001008217 0247_ $$2doi$$a10.1002/adfm.202302191
001008217 0247_ $$2ISSN$$a1616-301X
001008217 0247_ $$2ISSN$$a1057-9257
001008217 0247_ $$2ISSN$$a1099-0712
001008217 0247_ $$2ISSN$$a1616-3028
001008217 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02257
001008217 0247_ $$2WOS$$aWOS:000998877100001
001008217 037__ $$aFZJ-2023-02257
001008217 041__ $$aEnglish
001008217 082__ $$a530
001008217 1001_ $$0P:(DE-HGF)0$$aYang, Kunya$$b0
001008217 245__ $$aSpin‐Phonon Scattering‐Induced Low Thermal Conductivity in a van der Waals Layered Ferromagnet Cr$_2$Si$_2$Te$_6$
001008217 260__ $$aWeinheim$$bWiley-VCH$$c2023
001008217 3367_ $$2DRIVER$$aarticle
001008217 3367_ $$2DataCite$$aOutput Types/Journal article
001008217 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702973369_14857
001008217 3367_ $$2BibTeX$$aARTICLE
001008217 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008217 3367_ $$00$$2EndNote$$aJournal Article
001008217 520__ $$aLayered van der Waals (vdW) magnets are prominent playgrounds for developing magnetoelectric, magneto-optic, and spintronic devices. In spintronics, particularly in spincaloritronic applications, low thermal conductivity (κ) is highly desired. Herein, by combining thermal transport measurements with density functional theory calculations, this study demonstrates low κ down to 1 W m−1 K−1 in a typical vdW ferromagnet Cr2Si2Te6. In the paramagnetic state, development of magnetic fluctuations way above Tc = 33 K strongly reduces κ via spin-phonon scattering, leading to low κ ≈ 1 W m−1 K−1 over a wide temperature range, in comparable to that of amorphous silica. In the magnetically ordered state, emergence of resonant magnon-phonon scattering limits κ below ≈2 W m−1 K−1, which will be three times larger if magnetic scatterings are absent. Application of magnetic fields strongly suppresses the spin-phonon scattering, giving rise to large enhancements of κ. This study's calculations well capture these complex behaviors of κ by taking the temperature- and magnetic-field-dependent spin-phonon scattering into account. Realization of low κ, which is easily tunable by magnetic fields in Cr2Si2Te6, may further promote spincaloritronic applications of vdW magnets. This study's theoretical approach may also provide a generic understanding of spin-phonon scattering, which appears to play important roles in various systems.
001008217 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001008217 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001008217 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008217 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
001008217 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
001008217 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x2
001008217 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
001008217 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
001008217 7001_ $$0P:(DE-HGF)0$$aWu, Hong$$b1
001008217 7001_ $$0P:(DE-HGF)0$$aLi, Zefang$$b2
001008217 7001_ $$0P:(DE-HGF)0$$aRan, Chen$$b3
001008217 7001_ $$0P:(DE-Juel1)171236$$aWang, Xiao$$b4
001008217 7001_ $$0P:(DE-HGF)0$$aZhu, Fengfeng$$b5
001008217 7001_ $$0P:(DE-HGF)0$$aGong, Xiangnan$$b6
001008217 7001_ $$0P:(DE-HGF)0$$aLiu, Yan$$b7
001008217 7001_ $$0P:(DE-HGF)0$$aWang, Guiwen$$b8
001008217 7001_ $$0P:(DE-HGF)0$$aZhang, Long$$b9
001008217 7001_ $$0P:(DE-HGF)0$$aMi, Xinrun$$b10
001008217 7001_ $$0P:(DE-HGF)0$$aWang, Aifeng$$b11
001008217 7001_ $$0P:(DE-HGF)0$$aChai, Yisheng$$b12
001008217 7001_ $$0P:(DE-Juel1)130991$$aSu, Yixi$$b13$$ufzj
001008217 7001_ $$0P:(DE-HGF)0$$aWang, Wenhong$$b14
001008217 7001_ $$0P:(DE-HGF)0$$aHe, Mingquan$$b15$$eCorresponding author
001008217 7001_ $$0P:(DE-HGF)0$$aYang, Xiaolong$$b16$$eCorresponding author
001008217 7001_ $$0P:(DE-HGF)0$$aZhou, Xiaoyuan$$b17$$eCorresponding author
001008217 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202302191$$gp. 2302191$$n37$$p2302191$$tAdvanced functional materials$$v33$$x1616-301X$$y2023
001008217 8564_ $$uhttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202302191
001008217 8564_ $$uhttps://juser.fz-juelich.de/record/1008217/files/Adv%20Funct%20Materials%20-%202023%20-%20Yang%20-%20Spin%E2%80%90Phonon%20Scattering%E2%80%90Induced%20Low%20Thermal%20Conductivity%20in%20a%20van%20der%20Waals%20Layered.pdf$$yRestricted
001008217 8564_ $$uhttps://juser.fz-juelich.de/record/1008217/files/su_2305.13268.pdf$$yOpenAccess
001008217 8564_ $$uhttps://juser.fz-juelich.de/record/1008217/files/Adv%20Funct%20Materials%20-%202023%20-%20Yang%20-%20Spin%E2%80%90Phonon%20Scattering%E2%80%90Induced%20Low%20Thermal%20Conductivity%20in%20a%20van%20der%20Waals%20Layered.gif?subformat=icon$$xicon$$yRestricted
001008217 8564_ $$uhttps://juser.fz-juelich.de/record/1008217/files/Adv%20Funct%20Materials%20-%202023%20-%20Yang%20-%20Spin%E2%80%90Phonon%20Scattering%E2%80%90Induced%20Low%20Thermal%20Conductivity%20in%20a%20van%20der%20Waals%20Layered.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001008217 8564_ $$uhttps://juser.fz-juelich.de/record/1008217/files/Adv%20Funct%20Materials%20-%202023%20-%20Yang%20-%20Spin%E2%80%90Phonon%20Scattering%E2%80%90Induced%20Low%20Thermal%20Conductivity%20in%20a%20van%20der%20Waals%20Layered.jpg?subformat=icon-180$$xicon-180$$yRestricted
001008217 8564_ $$uhttps://juser.fz-juelich.de/record/1008217/files/Adv%20Funct%20Materials%20-%202023%20-%20Yang%20-%20Spin%E2%80%90Phonon%20Scattering%E2%80%90Induced%20Low%20Thermal%20Conductivity%20in%20a%20van%20der%20Waals%20Layered.jpg?subformat=icon-640$$xicon-640$$yRestricted
001008217 909CO $$ooai:juser.fz-juelich.de:1008217$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
001008217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171236$$aForschungszentrum Jülich$$b4$$kFZJ
001008217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b13$$kFZJ
001008217 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001008217 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001008217 9141_ $$y2023
001008217 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
001008217 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2022-11-15
001008217 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-15$$wger
001008217 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
001008217 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008217 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
001008217 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
001008217 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
001008217 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
001008217 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-24
001008217 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-24
001008217 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2022$$d2023-10-24
001008217 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
001008217 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
001008217 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2022$$d2023-10-24
001008217 920__ $$lyes
001008217 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001008217 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
001008217 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
001008217 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x3
001008217 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x4
001008217 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x5
001008217 9801_ $$aFullTexts
001008217 980__ $$ajournal
001008217 980__ $$aVDB
001008217 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001008217 980__ $$aI:(DE-588b)4597118-3
001008217 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001008217 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001008217 980__ $$aI:(DE-Juel1)PGI-4-20110106
001008217 980__ $$aI:(DE-82)080009_20140620
001008217 980__ $$aUNRESTRICTED
001008217 981__ $$aI:(DE-Juel1)JCNS-2-20110106