Home > Publications database > Spin‐Phonon Scattering‐Induced Low Thermal Conductivity in a van der Waals Layered Ferromagnet Cr$_2$Si$_2$Te$_6$ > print |
001 | 1008217 | ||
005 | 20250129094237.0 | ||
024 | 7 | _ | |a 10.1002/adfm.202302191 |2 doi |
024 | 7 | _ | |a 1616-301X |2 ISSN |
024 | 7 | _ | |a 1057-9257 |2 ISSN |
024 | 7 | _ | |a 1099-0712 |2 ISSN |
024 | 7 | _ | |a 1616-3028 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-02257 |2 datacite_doi |
024 | 7 | _ | |a WOS:000998877100001 |2 WOS |
037 | _ | _ | |a FZJ-2023-02257 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Yang, Kunya |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Spin‐Phonon Scattering‐Induced Low Thermal Conductivity in a van der Waals Layered Ferromagnet Cr$_2$Si$_2$Te$_6$ |
260 | _ | _ | |a Weinheim |c 2023 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1702973369_14857 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Layered van der Waals (vdW) magnets are prominent playgrounds for developing magnetoelectric, magneto-optic, and spintronic devices. In spintronics, particularly in spincaloritronic applications, low thermal conductivity (κ) is highly desired. Herein, by combining thermal transport measurements with density functional theory calculations, this study demonstrates low κ down to 1 W m−1 K−1 in a typical vdW ferromagnet Cr2Si2Te6. In the paramagnetic state, development of magnetic fluctuations way above Tc = 33 K strongly reduces κ via spin-phonon scattering, leading to low κ ≈ 1 W m−1 K−1 over a wide temperature range, in comparable to that of amorphous silica. In the magnetically ordered state, emergence of resonant magnon-phonon scattering limits κ below ≈2 W m−1 K−1, which will be three times larger if magnetic scatterings are absent. Application of magnetic fields strongly suppresses the spin-phonon scattering, giving rise to large enhancements of κ. This study's calculations well capture these complex behaviors of κ by taking the temperature- and magnetic-field-dependent spin-phonon scattering into account. Realization of low κ, which is easily tunable by magnetic fields in Cr2Si2Te6, may further promote spincaloritronic applications of vdW magnets. This study's theoretical approach may also provide a generic understanding of spin-phonon scattering, which appears to play important roles in various systems. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) |0 G:(DE-HGF)POF4-6G4 |c POF4-6G4 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
650 | 2 | 7 | |a Magnetism |0 V:(DE-MLZ)SciArea-170 |2 V:(DE-HGF) |x 0 |
650 | 2 | 7 | |a Condensed Matter Physics |0 V:(DE-MLZ)SciArea-120 |2 V:(DE-HGF) |x 1 |
650 | 2 | 7 | |a Materials Science |0 V:(DE-MLZ)SciArea-180 |2 V:(DE-HGF) |x 2 |
650 | 1 | 7 | |a Magnetic Materials |0 V:(DE-MLZ)GC-1604-2016 |2 V:(DE-HGF) |x 0 |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Wu, Hong |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Li, Zefang |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Ran, Chen |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Wang, Xiao |0 P:(DE-Juel1)171236 |b 4 |
700 | 1 | _ | |a Zhu, Fengfeng |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Gong, Xiangnan |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Liu, Yan |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Wang, Guiwen |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Zhang, Long |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Mi, Xinrun |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Wang, Aifeng |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Chai, Yisheng |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Su, Yixi |0 P:(DE-Juel1)130991 |b 13 |u fzj |
700 | 1 | _ | |a Wang, Wenhong |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a He, Mingquan |0 P:(DE-HGF)0 |b 15 |e Corresponding author |
700 | 1 | _ | |a Yang, Xiaolong |0 P:(DE-HGF)0 |b 16 |e Corresponding author |
700 | 1 | _ | |a Zhou, Xiaoyuan |0 P:(DE-HGF)0 |b 17 |e Corresponding author |
773 | _ | _ | |a 10.1002/adfm.202302191 |g p. 2302191 |0 PERI:(DE-600)2039420-2 |n 37 |p 2302191 |t Advanced functional materials |v 33 |y 2023 |x 1616-301X |
856 | 4 | _ | |u https://onlinelibrary.wiley.com/doi/10.1002/adfm.202302191 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1008217/files/Adv%20Funct%20Materials%20-%202023%20-%20Yang%20-%20Spin%E2%80%90Phonon%20Scattering%E2%80%90Induced%20Low%20Thermal%20Conductivity%20in%20a%20van%20der%20Waals%20Layered.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1008217/files/su_2305.13268.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1008217/files/Adv%20Funct%20Materials%20-%202023%20-%20Yang%20-%20Spin%E2%80%90Phonon%20Scattering%E2%80%90Induced%20Low%20Thermal%20Conductivity%20in%20a%20van%20der%20Waals%20Layered.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1008217/files/Adv%20Funct%20Materials%20-%202023%20-%20Yang%20-%20Spin%E2%80%90Phonon%20Scattering%E2%80%90Induced%20Low%20Thermal%20Conductivity%20in%20a%20van%20der%20Waals%20Layered.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1008217/files/Adv%20Funct%20Materials%20-%202023%20-%20Yang%20-%20Spin%E2%80%90Phonon%20Scattering%E2%80%90Induced%20Low%20Thermal%20Conductivity%20in%20a%20van%20der%20Waals%20Layered.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1008217/files/Adv%20Funct%20Materials%20-%202023%20-%20Yang%20-%20Spin%E2%80%90Phonon%20Scattering%E2%80%90Induced%20Low%20Thermal%20Conductivity%20in%20a%20van%20der%20Waals%20Layered.jpg?subformat=icon-640 |x icon-640 |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1008217 |p openaire |p open_access |p driver |p VDB:MLZ |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)171236 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)130991 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G4 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Jülich Centre for Neutron Research (JCNS) (FZJ) |x 1 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-15 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2022-11-15 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2022-11-15 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-15 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV FUNCT MATER : 2022 |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-24 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-24 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ADV FUNCT MATER : 2022 |d 2023-10-24 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
920 | 1 | _ | |0 I:(DE-588b)4597118-3 |k MLZ |l Heinz Maier-Leibnitz Zentrum |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-4-20201012 |k JCNS-4 |l JCNS-4 |x 3 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-4-20110106 |k PGI-4 |l Streumethoden |x 4 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 5 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-588b)4597118-3 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-4-20201012 |
980 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|