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Key Points: 12 

• A carbon dioxide infrared emission at 4.26 microns associated with the aurora is 13 
observed by the AIRS instrument 14 

• A new non-local thermodynamic equilibrium (NLTE) index provides a quantitative 15 
measure of the carbon dioxide auroral-associated emission  16 

• The AIRS auroral observations are confirmed by simultaneous SABER measurements 17 
and the SuperMAG Electrojet index 18 
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Abstract 20 

The Atmospheric Infrared Sounder (AIRS) instrument onboard the NASA Aqua satellite is used 21 
to observe aurora associated with the CO2 4.26 μm emission. These observations are due to non-22 
local thermodynamic equilibrium (NLTE) resulting from the vibrational excitation of CO2, 23 
which arises in the process of auroral energetic particle precipitation, as opposed to the dayside 24 
NLTE occurring due to solar radiation. The observations are confirmed to be associated with 25 
aurora using the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) 26 
limb measurements and the SuperMAG Electrojet (SME) index. The high spectral resolution and 27 
low noise associated with the AIRS instrument allows for the emission spectrum to be calculated 28 
and confirmed to arise from CO2. Our new NLTE index values derived from AIRS provide the 29 
ability to globally measure auroral events associated with CO2 with a spatial resolution on the 30 
order of ~13.5 km.  31 

Plain Language Summary 32 

The aurora are caused by energetic particle precipitation into Earth’s atmosphere due to energy 33 
buildup and release in Earth’s magnetic field from interaction with the solar wind. These 34 
energetic particles smash into Earth’s atmosphere with high energy, and react with atoms and 35 
molecules in the atmosphere. There are many types of emissions of light that are associated with 36 
Earth’s aurora. One of these emissions is the infrared emission centered near 4.26μm associated 37 
with excited CO2 molecules. When CO2 is vibrationally excited through an exchange of energy 38 
with an N2 molecule excited by auroral particles, the CO2 molecule eventually relaxes from this 39 
state and releases a photon near 4.26 μm. This research presents a satellite observation from 40 
NASA’s AIRS instrument allowing for the CO2 auroral emission to be viewed and mapped from 41 
space.  42 

1 Introduction 43 

The Atmospheric Infrared Sounder (AIRS) instrument onboard the NASA Aqua satellite was 44 
launched in 2002 and has been used to study the temperature in the stratosphere using CO2 45 
emissions at 4.26 μm and 15 μm [Hoffmann and Alexander, 2009]. While both of these 46 
emissions can be used to study temperatures during thermodynamic equilibrium, the 4.26 μm 47 
emission specifically is more sensitive non-local thermodynamic equilibrium (NLTE) during the 48 
daytime [DeSouza-Machado et al., 2007]. For a nadir sounder such as AIRS, the 4.3 μm NLTE 49 
effect can be measured, while the 15 μm NLTE effect is too small to be observed. Additionally, 50 
the 4.26 μm emission itself is susceptible to enhancements due to energetic particle precipitation 51 
during geomagnetic disturbances. This emission enhancement is known for both NO+ [Mertens 52 
et al., 2008a; Mertens et al., 2008b; O’Neil et al., 2007] and CO2 [Winick et al., 1987; Kumer, 53 
1977; Sharma et al., 2015; Kalogerakis et al., 2016]. The CO2 auroral excitation results in NLTE, 54 
and has previously been discussed with regards to the Cross-track Infrared Sounder (CrIS) NLTE 55 
observations in comparison to modeled NLTE radiances, which do not capture the full 56 
contribution to NLTE due to aurora [Li et al., 2020], as models have assumed NLTE conditions 57 
that occur during the daytime. Additionally, broadband IR measurements from VIIRS have also 58 
detected auroral emissions [Seaman and Miller, 2013], and the range of observed infrared 59 
wavelengths includes the NO+ and CO2 emissions.  60 
 61 
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Energetic particle precipitation changes the thermal energy balance in the mesosphere, 62 
thermosphere, and ionosphere. It results in significant chemical reactions, making energetic 63 
particle precipitation of interest for understanding both the chemistry and thermodynamics in this 64 
region of the atmosphere. Satellite and ground-based imaging of specific emission lines 65 
associated with aurora have been used to calculate auroral input energy to energetic particle 66 
precipitation [Gabrielse et al., 2021; Li et al., 2022; Hecht et al., 1989; Hecht et al., 2006; 67 
Strickland et al., 1989; Sotirelis et al., 2013]. Energetic particle precipitation from aurora and 68 
solar activity has also been associated with increased NOx [Randall et al., 2007; Lopez-Puertas 69 
et al., 2005]. The necessity of understanding the full spectrum of energetic electrons for 70 
adequately characterizing the chemistry in the middle atmosphere has also previously been 71 
discussed [Randall et al., 2015]. Additionally, understanding energetic input due to aurora and 72 
particle precipitation is important for linking to atmospheric dynamics such as the generation of 73 
traveling ionospheric disturbances due to joule heating [Sheng et al., 2020]. 74 
 75 
Observations presented here demonstrate an AIRS 4.26 μm emission associated with auroral 76 
precipitation. The observations are compared with SABER observations and the SME. These 77 
AIRS measurements provide a unique means of observing auroral emissions at 4.26 μm spatially 78 
with a nadir viewing instrument. The emission spectra from the nadir measurements in this 79 
spectral range were found to be largely due to CO2. To isolate emissions due to 4.26 μm, a new 80 
NLTE index, discussed in the following sections, is calculated. The results provide a map of CO2 81 
emissions during nighttime conditions due to energetic particle precipitation from aurora.  82 

2 Data and Methods 83 

2.1 The AIRS instrument and a measurement derived NLTE index  84 

In this study, we initially identified the presence of NLTE effects in the AIRS observations by 85 
visual inspection of radiance measurements covering the 4.26 and 15 μm carbon dioxide (CO2) 86 
fundamental bands. As an example, Fig. 1 shows spectral mean radiances of granule 32 of AIRS 87 
measurements on 14 October 2016, measured from 3:12-3:18 UTC using a set of 75 channels 88 
from 2310 cm-1 to 2380 cm−1 covering the 4.26 μm waveband and a set of 120 channels from 89 
650 cm-1 to 680 cm−1 covering the 15 μm waveband. Here, the radiance measurements of the two 90 
channel set have been averaged to reduce the measurement noise and to make some weaker 91 
NLTE features visible. A visual inspection of the AIRS nighttime measurements shows locally 92 
increased radiances due to NLTE in the 4.26 μm waveband (Fig. 1a), which are absent in the 15 93 
μm waveband (Fig. 1b). The increased 4.26 μm radiances are found in a belt extending from 94 
Iceland to Scandinavia from 65 to 70oN. The belt of increased radiances is co-located with the 95 
Aurora Borealis and attributed to excitation of the CO2 molecules to NLTE conditions, which 96 
will be shown and further discussed in following sections.  97 
 98 
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𝑁𝐼 = 𝐵𝑇തതതത௠௘௔௦൫4.26𝜇𝑚, 𝑇௡௢௡ି௅்ாሺ𝑧ሻ൯ − 𝐵𝑇തതതത௦௜௠ ቀ4.26𝜇𝑚, 𝑇෠௅்ாሺ𝑧, 15𝜇𝑚ሻቁ (1) 136 

 137 
 138 
As an example, Fig. 1c shows the NI calculated from the AIRS measurements for the case study 139 
discussed earlier. As NLTE conditions yield increased molecular excitation and increased 140 
radiance emitted by the CO2 molecules, the NI increases in the presence of NLTE conditions. 141 
From the example shown here, the maximum NI is about 4K whereas the measurement noise is 142 
about 0.5 K. We note that while the NI is usually well-defined, in the case of extreme 143 
temperature fluctuations, e.g., due to the presence of large-amplitude mountain waves, the index 144 
may misdetect these fluctuations as NLTE signals. This issue arises from remaining, small 145 
differences in terms of vertical coverage and sensitivity of the AIRS 4.26 and 15 μm channels 146 
selected for this analysis. However, based on the inspection of a larger number of cases of AIRS 147 
NLTE observations, we conclude that this issue is generally not severe, but should be kept in 148 
mind when analysing individual cases. Such cases can be identified using gravity wave detection 149 
methods for AIRS observations as described by Hoffmann et al. (2013, 2014). 150 
 151 

2.2 Comparison of AIRS NLTE index and SME data  152 

The NLTE index was calculated over the northern polar region for a time period of increased 153 
auroral activity. The time period extends from 7.5UT on 13 October 2016 to 6.5 UT on 14 154 
October 2016 and uses 15 granules. The resulting NLTE index signals in Fig. 2a clearly show the 155 
shape of the aurora. AIRS nightside granules were used (solar zenith angles were between 100-156 
130 degrees for data shown), and these times approximately spanned  just before magnetic 157 
midnight to a few hours before magnetic midnight, which generally overlaps times of expected 158 
auroral activity on the night side (Laundal and Richmond, 2016). While not shown here, similar 159 
emissions can be observed in the southern hemisphere during nighttime conditions. The 160 
SuperMAG Electrojet (SME) index [Newell and Gjerloev, 2011a, 2011b; Gjerloev, 2012] is 161 
associated with global auroral power. The SME uses over 100 magnetometer sites as opposed to 162 
the 12 used in the auroral electrojet (AE) index calculation, and has previously demonstrated a 163 
strong correlation with total nightside auroral power. The SME is used here to demonstrate times 164 
of increased auroral activity.The SME is plotted during an overlapped time range in Fig. 2b. As 165 
can be observed from the plots in Fig 2, the times of stronger NLTE index signals correspond to 166 
times of stronger SME index. This comparison provides a means of demonstrating the auroral 167 
influence on AIRS NLTE index calculations. Fig 2a also shows how this data product can be 168 
used to give a global snapshot of hemispheric auroral activity over a 24 hour period.  169 
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aurora observed during nighttime conditions during strong geomagnetic activity, it is noted that 245 
this result would also be expected to occur during any energetic particle precipitation or process 246 
that causes a vibrationally excited state of N2. This includes aurora occurring on the dayside, 247 
which has not been investigated with the technique presented here.  248 

4 Summary 249 

We have demonstrated that hyperspectral nadir infrared sounders such as AIRS can observe the 250 
CO2 emissions associated with aurora during nighttime conditions. The AIRS instrument has the 251 
spectral resolution to demonstrate that these emissions arise from the CO2 emission centered at 252 
4.26 μm. The observations are confirmed to overlap aurora through the use of near-coincident 253 
SABER measurements and the SME index data. These are the first nadir satellite observations of 254 
confirmed CO2 auroral emission. The method presented here highlights a new dataset using the 255 
derived non-local thermodynamic equilibrium index, which can be used for the study of aurora 256 
and associated CO2 excitation. This method uses AIRS granules, allowing for a spatial view of 257 
the auroral emission, and also providing a map view spanning the auroral oval.  258 
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