
1 
 

Holistic approach for microgrid planning for e-mobility 

infrastructure under consideration of long-term 

uncertainty 

Muhammad Tayyab*,1, Ines Hauer2, Sebastian Helm3 
1Fundamental Electrochemistry (IEK-9), Institut für Energie- und Klimaforschung, Forschungszentrum Jülich 
2Institut für Elektrische Energietechnik und Energiesysteme, Technische Universität Clausthal 
3Chair Electric Power Networks and Renewable Energy (LENA), Otto von Guericke University Magdeburg, 

Germany 
* m.tayyab@fz-juelich.de 

Abstract 
Integrating renewable energy sources in sectors such as electricity, heat, and transportation has 

to be planned economically, technologically, and emission-efficient to address global 

environmental issues. Microgrids appear to be the solution for large-scale renewable energy 

integration in these sectors. The microgrid components must be optimally planned and operated 

to prevent high costs, technical issues, and emissions. Existing approaches for optimal 

microgrid planning and operation in the literature do not include a solution for e-mobility 

infrastructure development. Consequently, the authors provide a compact new methodology 

that considers the placement and the stochastic evolution of e-mobility infrastructure. In this 

new methodology, a retropolation approach to forecast the rise in the number of electric 

vehicles, a monte-carlo simulation for electric vehicle (EV) charging behaviors, a method for 

the definition of electric vehicle charging station (EVCS) numbers based on occupancy time, 

and public EVCS placement based on monte-carlo simulation have been developed. A 

deterministic optimization strategy for the planning and operation of microgrids is created 

using the abovementioned methodologies, which additionally consider technical power system 

issues. As the future development of e-mobility infrastructure has high associated uncertainties, 

a new stochastic method referred to as the information gap decision method (IGDM) is 

proposed. This method provides a risk-averse strategy for microgrid planning and operation by 

including long-term uncertainty related to e-mobility. Finally, the deterministic and stochastic 

methodologies are combined in a novel holistic approach for microgrid design and operation 

in terms of cost, emission, and robustness. 

The proposed method has been tested in a new settlement area in Magdeburg, Germany, under 

three different EV development scenarios (negative, trend, and positive). EVs are expected to 

reach 31 percent of the total number of cars in the investigated settlement area. Due to this, 

three public electric vehicle charging stations will be required in the 2031 trend scenario. Thus, 

the investigated settlement area requires a total cost of 127,029 €. In association with possible 

uncertainties, the cost of the microgrid must be raised by 80 percent to gain complete robustness 

against long-term risks in the development of EVCS.  
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method, E-mobility infrastructure, Holistic approach, optimizations, sector coupling 
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Nomenclature 

parameters Variables and indices 

EV Electric 

vehicle 
𝑁𝐸𝑉 Number of 

EVs 
𝑃𝑒𝑙𝑒𝑐 Power 

consumed 

by 

electrolyser 

𝐶𝑝 Betz value 

 

EVCS Electric 

vehicle 

charging 

station 

𝑋𝑜 Number of 

EVs in the 

initial year 

𝑃HP,in Power 

consumed 

by heat 

pump 

𝜈 Wind speed 

IGDM Information 

gap decision 

method 

ℳ EV rising 

rate 
𝑃EVCS Power 

consumed in 

EVCS 

𝜂𝑀 Solar 

module 

efficiency 

ICE Internal 

combustion 

engines 

𝜏 Difference 

between the 

current year 

and the 

initial year 

𝑃𝐷𝐸𝑅𝑠 DERs power 𝑃𝑖𝑛 Active 

power 

injected 

CHP Combined 

heat and 

power 

𝑠𝑜𝑐EV,t State of 

charge of the 

EV battery 

𝑃𝐷𝐸𝑅𝑠,𝑐𝑎𝑝 Power 

capacity of 

DERs 

𝑨 Connecting 

matrix away 

from nodes 

PV Photovoltaic 𝐸cons, tr Energy 

consumption 

of the EV 

during the 

time of 

travel (𝑡𝑟) 

𝑃𝐷𝐸𝑅𝑠,𝑚𝑎𝑥 Power 

capacity 

limit of 

DERs 

𝑩 Connecting 

matrix into 

nodes 

EESS Electrical 

energy 

storage 

system 

𝐸EV,bat Rated 

capacity of 

the battery of 

the electric 

vehicle 

𝑃𝐸𝑆,𝑐𝑎𝑝       Power 

capacity of 

Energy 

storage 

systems 

𝐼n Branch 

current 

TESS Thermal 

energy 

storage 

system 

𝑃EVCS Rated power 

of EVCS 
𝑃𝐸𝑆,𝑐ℎ Charge 

power of 

Energy 

storage 

systems 

𝑃s Branch 

active 

power 

P2H Power to 

hydrogen 
𝑖, 𝑗 Nodes of the 

microgrid 
𝛾1, 𝛾2 Binary 

variable 
𝑅n Resistance 

of the 

branch 

RES Renewable 

energy 

sources 

𝑁𝑉𝑆𝐼i NVSI for a 

node 

number (𝑖) 

𝑃𝐸𝑆,𝑑𝑖𝑠𝑐ℎ Power 

capacity 

limit of 

Energy 

storage 

systems 

𝑄in Reactive 

power 

injected 

DIN Deutsche 

Institut für 

Normung 

e.V. 

𝑈𝑘 Nominal 

voltage 
𝐸𝐸𝑆 Energy of 

Energy 

storage 

systems 

𝑄𝑠 Branch 

reactive 

power 

VDI Verein 

Deutscher 

Ingenieure 

e.V. 

𝑈𝑗 Voltage at 

the jth node 
𝜂𝐸𝑆 Energy 

storage 

systems 

efficiencies 

𝑋n Reactance 

of the 

branch 
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CO2 Carbon 

dioxide 
𝑛 Total number 

of nodes 
𝑄HP,out Heat 

generated 

by heat 

pump 

𝑣𝑛 Voltage 

after 

assumption 

DERs Distributed 

energy 

resources 

𝑌 Planning 

horizon 
𝑆𝐶𝑂𝑃𝐻𝑃 SCOP of 

heat pump 
𝑙𝑚𝑎𝑥 Thermal 

limit of 

cable 

 

NVSI Node 

voltage-

sensitive 

index 

𝐶inv Investment 

cost 
𝑃𝑤,𝑛 Normalized 

power 

generated 

by wind 

system 

𝛤 Uncertainty 

set 

HESS Hydrogen 

energy 

storage 

system 

𝐶op Operational 

cost 
𝑃𝐼𝑟𝑟 Irradiance 𝛼𝐸𝑉𝐶𝑆 Uncertainty 

region 

HP Heat pump 𝐶penalty, CO2 CO2 penalty 

cost 
𝐻2,𝑜𝑢𝑡 Hydrogen 

produced 
𝑁𝐸𝑉𝐶𝑆 number of 

EVCS 

GHG Greenhouse 

gasses 
𝐸𝑀grid Grid 

emission 

intensity 

parameter 

𝐻𝑙𝑜𝑤 Lower 

heating 

value of 

hydrogen 

𝑁̂𝐸𝑉𝐶𝑆 Uncertain 

number of 

EVCS 

SFH Single family 

house 
𝐶𝐸𝑀 Cost of CO2 

emission 
 𝑄𝐹𝐶 Heat 

produced by 

fuel cell 

  

MFH Multi-family 

house 
𝑡 Operational 

horizon 
𝛩𝐹𝐶 Heating 

efficiency of 

fuel cell 

𝑓𝑏 allowed 

budget 

CRE Commercial 

real estate 
𝑃PV Power 

generated by 

PV systems 

𝜌 Density   

PCC Point of 

common 

coupling 

𝑃𝑤 Power 

generated by 

wind system 

𝐴𝑤 Rotor area   

KBA Kraftfahrt-

Bundesamt 
𝑃grid Power 

imported 

from grid 

    

SCOP Seasonal 

coefficient of 

performance 

𝑃BD Battery 

discharge 

    

kW Kilowatt 𝑃FC Power 

generated by 

fuel cell 

    

mm Millimeter 𝑃Load Electrical 

load 

    

kV Kilovolt 𝑃BC Battery 

discharge 

    

MVA Megavolt-

amperes 

      

m3 Cubic meter       

𝑀𝑖𝑛 Minimization       

𝑀𝑎𝑥 Maximization       
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1 Introduction 
Germany aims to be an emission-free country by 2045 [1]. Greenhouse gases are targeted to 

be reduced by at least 65 percent by 2030 and 88 percent by 2040 compared to 1990 levels [2]. 

Renewable energy sources must replace fossil fuels in all sectors to achieve these emissions 

reduction targets. The primary GHG emissions in the transport sector are caused by internal 

combustion engines (ICE). Because of the depletion of fossil fuels, the usage of ICE 

encourages carbon dioxide emissions that contribute to global warming. In the long-term, ICE 

will be replaced by lower-emission or zero-emission vehicles, such as hybrid, electric, and fuel-

cell vehicles [3]. A high amount of electric vehicles require a significant amount of charging 

energy. Therefore, a substantial proportion of renewable energy sources must power the e-

mobility infrastructure. The local renewable energy generation to support the e-mobility 

infrastructure will be emission-effective. 

Consequently, to plan for a secure local renewable supply to e-mobility infrastructure, the 

growth in the number of EVs and EVCS must be estimated. Furthermore, the low-voltage grid 

usually powers the EVCS and EVs. Furthermore, installed renewables such as PV are mostly 

integrated into the middle and low voltage grid [4]. However, the existing power grid will not 

always be able to handle the additional power and adverse impacts due to the large-scale 

deployment. A microgrid can be a solution for integrating many renewable energy sources and 

e-mobility infrastructure in a low-voltage grid. Nevertheless, the components must be 

optimally planned to avoid high costs, technical problems, and high emissions. Motivated by 

the alternatives to power the sustainable e-mobility infrastructure alongside other demands, 

optimal microgrid planning and operation are needed. The best planning and operation can be 

realized for a new settlement area where sustainable energy and power supply may be 

developed for a green, efficient, and intelligent infrastructure-based community.  

A microgrid's decision-making must be planned for the future, considering affecting variables. 

Furthermore, the investment in the microgrid needs to be backed up by confidence in smooth 

and secure operation. An overestimated microgrid is a waste of money, whereas 

underestimated one has issues such as high energy import from the conventional grid. 

Optimization algorithms solve these problems with optimal planning and operation of the 

microgrid. Uncertain or unavailable data that are needed to estimate the future effect of 

microgrids for decision-making are the major hurdles in efficient microgrid planning and 

operation. Significantly, e-mobility infrastructure development has been fraught with long-

term uncertainties. The following points address the risks associated with the e-mobility 

infrastructure: 

❖ Long-term uncertainty: The increase in the number of EVCS is influenced by direct 

and indirect factors. Some of the determining elements are listed below. 

o Direct factor 

▪ The rise in the number of EVs  

o Indirect factors 

▪ Development of EV battery technology 

▪ Development of charging point technology 

▪ Developments in the government regulation 

▪ Development of public infrastructure 

▪ Announcements of electric vehicle subsidies 

▪ Political infrastructure goals 

▪ Development of other alternative transport technologies, such as 

synthetic fuels and fuel cell vehicles 
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Due to these factors, microgrid planning and operation need to consider long-term uncertainty 

regarding e-mobility infrastructure. The different scenarios show that the forecasts are based 

on past experiences. However, the number of EVCS can be triggered toward positive or 

negative due to the direct and indirect influencing factors. For that reason, the forecast has a 

long-term uncertainty that needs to be modeled for a risk-averse situation in microgrid 

decision-making. 

The optimal microgrid planning and operation have been studied vastly. Microgrid planning 

and operation considering loads, renewables, and energy storage are proposed in [5,6]. These 

studies include energy storage and demand responses for the promotion of renewables and cost 

reduction. Furthermore, the multi-energy microgrid to optimize the portfolio mix for the 

components is proposed in [7,8]. In this study, generation units such as combined heat and 

power (CHP), photovoltaic (PV), and wind systems are alongside the energy storage units such 

as electrical energy storage system (EESS) and thermal energy storage system (TESS) to satisfy 

the electrical and heat demand. The power-to-heat (P2H) sector coupling complements the 

analysis. Renewable energy-based power to hydrogen (P2H) technology uses renewable energy 

sources (RES) to generate valuable heat energy for consumers to decrease curtailments [9]. 

The studies neglect the e-mobility sector, especially the inclusion of EVCS as an additional 

electrical load in the planning and operation horizon. 

However, in [10-12], the electrical vehicle charging load is generally shown by a probability 

distribution and has been included as a unified aggregator. This approach will lead to an unreal 

realization of e-mobility infrastructure planning as the EV load and the number of EVCS are 

interdependently independent. Due to this, the question of how many EVCS are sufficient for 

how many EVs is raised. Hence, the number of EVs and EVCS in a community is an important 

problem for planning and operation. Apart from the number of EVCS, the placement of EVCS 

is also crucial due to the high load associated. 

The authors of [13] present an optimization process for optimal siting and sizing with road 

networks using graph theory. A genetic optimization-based algorithm considering cost, EV 

energy losses, and power system losses has been presented [14]. An EVCS placement 

algorithm has been shown for under-construction traffic networks by minimizing transportation 

waste costs using queuing theory [15]. A heuristic planning method considering the EVs 

charging demand rather than the traffic model has been present in [16]. The authors of [17] 

developed a location model considering an EV driver's existing activities. While a colony 

optimization has been presented for optimal placement considering cost, real power loss, 

voltage instability, and traffic flow constraints in [18-20]. A particle swarm optimization (PSO) 

has shown a better and faster convergence for this problem in [21-23]. Algorithms such as 

genetic algorithms (GA) and teaching-learning-based algorithms have also been used for this 

problem in [24-31]. In addition to heuristic techniques, the primal-dual interior-point algorithm 

has been used to find the optimal location depending on coverage and environmental 

factors [32]. Greedy algorithms and linear programming have also been used for this issue 

in [33,34]. In the above-stated methods, the multi-period planning for the development in the 

e-mobility sector, e.g., the rise in the number of EVs and EVCS, the realistic random behavior 

of EV depending on the traffic model is still lacking to the best of the author's knowledge. 

Furthermore, in a planning problem, the placement for EVCS is probabilistic due to the high 

number of impacting factors, such as the electrical grid structure, space, accessibility, and the 

quantity of EVs expected to be charged. The field of e-mobility development modeling has 

benefited from the approaches below to take the impacts mentioned earlier into account. 



6 
 

❖ Model for e-mobility infrastructure 

o Forecast method for the number of EVs based on retropolation and extrapolation 

o Monte-carlo simulation for the EVs charging behavior 

o The determination of the number of EVCS based on the occupancy time 

o EVCS placement algorithm based on monte-carlo simulation 

Although the above-stated method considers planning and operation for mix-portfolio for 

DERs, these are solved without any uncertainty or just short-term uncertainties. However, the 

long-term uncertainty has not been considered. A study that evaluated long-term uncertainties 

regarding the declining cost of the battery is solved with robust optimization [35]. The long-

term uncertainties regarding the rise in the EVCS are still lacking. To reduce the financial, 

emission, and technical risks, novel approaches are needed considering the surge in EVCS 

uncertainty.  

The study developed a new robust decision-making method for microgrids in a new settlement 

area. The proposed method is a risk-averse stochastic optimal microgrid planning method 

considering the long-term uncertainty. The risk-averse levels then enable the decision-makers 

to decide on the microgrid planning and operation based on robustness for long-term 

uncertainty. The contributed methods developed for the stochastic microgrid planning and 

operation are as follows: 

❖ A new information gap decision method (IGDM) is developed for optimal microgrid 

planning under the rise in EVCS uncertainties. 

Finally, a holistic approach that combines the deterministic and stochastic optimization 

approach enables the planning and operation of a microgrid optimally. The proposed combined 

approach is claimed to be beneficial for decision-makers to increase the local use of renewables 

when the e-mobility develops with associated uncertainties. 

The paper is organized as follows. The methodology is described in section 2. Firstly, in this 

section, the e-mobility infrastructure modeling methodology is presented. Secondly, the 

formulation for the optimization method is given, consisting of a deterministic and stochastic 

optimization model. Finally, in section 3, the results are discussed, and a conclusion with an 

outlook is given in section 4.   

2 Methodology 
The study aims to optimally plan and operate a microgrid that can be built with existing 

electrical grid infrastructure. The microgrid is assumed to be a radial low-voltage grid 

consisting of connection nodes, lines, a transformer, and loads. The line parameters are 

modeled as NAYY 4x 35-150 mm², while the house connections are depicted as NAYY 4x 16-

50 mm² [36,37]. The transformer is a 15 kV/0.4 kV transformer with a rating of 0.63 MVA. 

Different types of loads are considered, such as single-family houses, multi-family houses, and 

commercial real estate. The nominal line-to-line voltage for the electric low-voltage grid is 

400 V [38], and the voltage must be in the range of ±10 percent of the nominal voltage 

according to DIN-EN-50160 [39] during the total planning period, maintaining the microgrid's 

secure operation and customer satisfaction.  

A microgrid also has an associated heating demand. The heating demand is computed using 

VDI4655 [40]. The proposed methodology consists of two parts. In the first part, the e-mobility 

infrastructure is modeled. Secondly, the deterministic and stochastic optimization model is 

prepared with the component model and input parameters. Microgrid planning and 

optimization are based on a novel concept for the growth of e-mobility infrastructure. The 



7 
 

parameter value and the initial conditions define the model's output in deterministic models. 

The stochastic model considers uncertainties, meaning that the same set of parameter values 

and initial conditions will produce distinct outcomes. After the input parameters, such as 

electrical and heat loads, are modeled, the e-mobility infrastructure is determined. The holistic 

approach combining e-mobility infrastructure deterministic and stochastic optimization model 

is proposed for planning a new settlement area, as shown in figure 2.1. A pseudo-code for the 

Holistic methodology is given in the annex. 

 

Figure 2.1 Microgrid proposed methodology  

2.1 E-mobility infrastructure 
The modeling of e-mobility infrastructure is performed in three steps. First, the rise in EVs is 

forecasted for different scenarios. The number of EVCS is modeled based on the increase in 

EVs and charging behavior, considering occupancy duration. Finally, a placement algorithm is 

incorporated to find the best place for the number of EVCS. A pseudo-code for the 

methodology of e-mobility infrastructure is given in the annex. 

 Forecast for the rise in the number of EVs based on retropolation 
The first step is to develop a future scenario for the number of EVs based on generated 

scenarios shown in figure 2.1. The number of EVs is essential to decide the number of EVCS. 

The critical factor is to define the realization of these scenarios consistently and completely. It 

is assumed that the development of EVs over conventional vehicles depends on the investment 

cost, operational cost, driving benefit, and additional benefits.  

Investment cost 

Negative: The assumed cost targets are not reached. in 2026, electric vehicles will be even 

more expensive than ICE. The federal government did not extend the funding (poor 

costs/benefits; more investments in public transport or other technologies) 
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Trend: Production costs fall through technology improvements, learning, and economies of 

scale, especially battery prices. It is expected that the assumed cost parity will be reached by 

2026. Around 300,000 vehicles are to be subsidized. 

Positive: The assumed cost targets reach much earlier (e.g., 2024). Therefore, cost 

advantages will be achieved in 2026. The federal government continues to subsidize vehicles 

to accelerate the turnaround in traffic 

Operational cost 

Negative: Energy costs rise, CO2 tax rises moderately, and vehicle tax is levied. Insurance 

and repairs are a little more expensive as compared to ICE. 

Trend: Energy costs rise despite lower production costs for renewables, and vehicle tax 

remains exempt for ten years. The advantage of CO2 tax increases (higher CO2 prices with a 

simultaneous reduction in CO2 intensity of electricity). Insurance, wear and tear, and repairs 

are also not so expensive. 

Positive: Energy costs decreases. CO2 tax rises dynamically, and vehicle tax exemption 

remains. Insurance and repairs become cheaper based on empirical values 

Driving benefits 

Negative: For efficiency, acceleration and driving experience is not further developed. Driving 

range, mileage, and charging time remains low. 

Trend: There are no significant developments in acceleration. The driving range is increasing 

continuously, more and more fast-charging stations are being set up, and charging time is 

approaching a vehicle tank duration. 

Positive: Acceleration and driving experience increase to a more precise distance than 

combustion engines. Excellent driving range as compared to combustion engines. Charging 

(e.g., by induction) takes place without additional effort. 

Other benefits 

Negative: Space is only slightly better in EVs. Similar features to ICE in terms of storage. The 

number of variants remains lower than combustion engines 

Trend: Space is increasing moderately through further optimizations. Equipment is becoming 

more extensive, and it is growing in importance for bi-directional charging. A variety of 

variants is developed as compared to combustion engines 

Positive: Significantly more space and better equipment in all EVs. EVs are far better in terms 

of storage. The variety of variants exceeds combustion engines 

A trend is identified through literature for each of these factors, and the development of trend 

scenarios is estimated. The positive and negative scenarios are then computed by shifting the 

value of the key parameters. Based on the key factors, the scenario development compared to 

the conventional vehicle is shown in table [41]. 

Table 2.1 assessment of the key factor to generate scenario for 2026 

Key factors Positive Trends Negative 

Investment cost EV better EV neutral EV worse 

Operational cost EV much better EV better EV marginal better 

Driving benefit EV better EV neutral EV worse 

Another benefit EV better EV neutral EV marginal better 

Assumed EV share 55% 40% 20% 
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Table 2.1 illustrates how EVs outperforms traditional vehicle. These assumptions rebased on 

the EVs registered. The EVs will be bought and registered more if better in these factors. The 

assumed EV shares are based on the study's hypothesis [42]. Due to this, these shares can be 

flexible to be changed. The percentage of EVs must be assumed in 2026 to implement 

retropolation for the following five years. The share of EVs compared to conventional vehicles 

in 2026 is known from table 2.1. Once the number of EVs in 2026 is known, the number from 

2022 to 2026 is developed through retropolation. Retropolation is the technique to connect the 

future with the current scenarios shown in figure 2.2 [43]. The meaningful trend analysis leads 

to planning the future through retropolation. 

 
Figure 2.2 Retropolation method 

The forecast for the number of EVs is considered to grow exponentially due to user adoption. 

Due to this, the exponential growth function for the rise in the number of EVs (𝑁EV) in a 

year (𝑦) in the planning horizon is shown in (2.1). 

𝑁EV = 𝑋o(ℳ)τ  (2.1) 

where 𝑋o is the number of EVs in the initial year. 𝜏 is the difference between the current year 

and the initial year. The initial year is considered to be 2021 in the present study, and the current 

year will be changing on the planning horizon. ℳ is the rate at which the rise of the EVs can 

reach 20 percent for negative, 40  percent for trend, and 55 percent for the positive scenario 

in 2026. The value of ℳ is taken from the study [41]. 

 Electric vehicle behavior using monte-carlo simulation 
The EVs can be in three different states (traveling, charging, or parked without charging). Due 

to the EV owner's random decision parameters, predicting these states at any given time step 

is nearly impossible. Parameters such as the number of trips, arrival time, departure time, 

kilometers traveled in a trip, duration of a trip, and power consumption according to speed are 

some of the EV owner's arbitrary decisions. Due to this, these parameters must be considered 

as random as much as possible. The monte-carlo simulation is used to model the EV behaviors 

and evaluate randomness.  
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Nonetheless, examining as many random variables as possible regarding EV behaviors would 

be preferable. Still, some of them must be fixed to avoid high complexities. The characteristics 

such as the number of trips, power cost per kilometer, and minimum EV battery state of charge 

required before departure are regarded as fixed parameters in the current studies. The arrival 

times, kilometers traveled, and travel duration is assumed to follow a distribution. The 

distribution has resulted chiefly from a detailed traffic model of Burg city in Germany. The 

current study uses the Burg traffic model's survey data for the probability distribution fit in the 

monte-carlo simulation [44,41]. Based on the Burg traffic model, the EVs arrival distribution 

is distinguished for each district type. The traffic data must be fitted with the available 

probability distribution functions to simulate the EV load based on these parameters. For a 

settlement area classified as a residential area with a small number of shops and markets, the 

following distribution function and related distribution fit are displayed in figure 2.2. It is 

assumed that 15 percent of the time, the EVs will charge from public EVCS [45]. 

 
Figure 2.2 Traffic model and distribution fit for a residential area [41,44,46] 

The precise EVs that will charge from private and public charging stations are picked 

randomly. The ratio between the number of EVs and nodes in the grid is used to deploy the 

private charging stations. The distribution of private charging stations in the electrical network 

is linear and even, with a ratio determined by the total number of (anticipated) electric vehicles 

and network connection nodes. If the ratio of the number of EVs to the total nodes is n, a private 

EV charging station with a rated power of 11 kW will be placed in every nth node of the grid. 

The nodes can have more than one private charging station depending on the number of EVs 

and the available grid nodes. When traveling, the change in the state of charge of the EV battery 

(𝑠𝑜𝑐EV) is calculated as given in (2.2), where 𝐸cons is the energy consumption of the EV during 

the time of travel (𝑡𝑟).  

𝑠𝑜𝑐EV,t = 𝑠𝑜𝑐EV,t−1 −
𝐸cons, tr

𝐸EV,bat
  (2.2) 
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Here, 𝐸EV,bat is the rated capacity of the battery of the electric vehicle. The energy consumption 

of an EV is calculated by multiplying the consumption per kilometer and kilometer traveled. 

A value of 0.1922 kWh per kilometer has been used [41]. If the 𝑠𝑜𝑐EV during the charging state 

is smaller than 0.9, the EV is charged with a rated power of EVCS (𝑃EVCS). The EVs are 

charged until the charging time (𝑡ch) or 𝑠𝑜𝑐EV=1 is reached. A 22 kW EVCS is assumed in the 

present study for public charging, and 11 kW is used for private charging. At the time of 

charging, the 𝑠𝑜𝑐EV is determined according to (2.3). 

𝑠𝑜𝑐EV,t = 𝑠𝑜𝑐EV, t−1 +
𝑃EVCS 𝑡ch

𝐸EV, bat
 

 (2.3) 

The EV behavior simulation method is given in figure 2.3. 

 

Figure 2.3 Method for EV behaviors 

 Model for the occupancy time for public electric vehicle charging station 
The critical deciding factor for the number of public EVCS will be the number of EVs arriving 

at the charging station immediately and how many of them can wait. A detailed model has been 

developed for charging stations based on occupancy time. The number of EVCS depends on 

several parameters, such as location, usage, and budget, among others. The current study 

highlights the use of EVCS as the most crucial parameter. The usage of EVCS is highlighted 

in terms of the period when the EV occupies the EVCS. The occupancy time is defined as when 

EVs are already connected to EVCS, and another EV expects a time slot. The novelty of the 

proposed model is the relationship between the number of charging stations and the occupancy 

time. The concept of occupancy for EVCS is presented in figure 2.4. 
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Figure 2.4 concept of occupancy time model for EVCS 

Each EV in the waiting queue has an associated charging time computed in section 2.1.2. The 

EVs are charged from the rated power of EVCS, but the duration of charging every EV will be 

different as some EVs that lose more energy during traveling will charge longer. If there is only 

one EVCS, and the number of EVs is high, there will be queues of EVs waiting. Otherwise, 

the EVCS will be overestimated. Hence, the optimal number is needed for a low investment 

cost and a good occupancy time. A single EVCS handles two EVs simultaneously, so the third 

EV must wait. This waiting time of EV will determine the occupancy time of the EVCS. 

However, the occupancy time becomes zero during this period as no EV is waiting. Finally, 

the total times when the EVCS is occupied are averaged per day, and the number of EVCS is 

determined based on the occupancy time. A detailed description of the model to determine the 

number of EVCS is given in the annex. 

 Placement algorithm for public EVCS with monte-carlo simulation 
The next point is to optimally place the public charging infrastructure in the electrical network 

so it can be supplied in the best possible way. The EVCS should be consistent and ready to 

power the EV with its rated power at all times without reaching the critical grid voltage. For 

that reason, the microgrid electrical power system without any infeed of the distributed energy 

resources (DERs) is considered. This is a worst-case consideration to ensure that the critical 

under voltage is avoided after placement. A potentially less conservative approach for the 

placement of EVCS is game theory through optimization [47]. However, the holistic method 

proposed in this paper emphasizes grid voltage stability. The optimization approach with power 

flow equations due to non-convexity is avoided in e-mobility infrastructure planning. This 

section aims to find the best nodes for EVCS placement based on the voltage stability of the 

microgrid before optimal planning and operation methods to avoid high complexity and 

intractability.  

The sensitivity of the voltage to EVCS load is computed with the node voltage-sensitive 

index (NVSI) by using newton raphson power flow. A single EVCS station with a rated power 

of 22 kW is placed on the ith node of the grid. In the next step, the voltages for all nodes of the 

grid are calculated to find the NVSI of this node i. The procedure has been repeated for every 

grid node. All grid nodes have the associated load computed as an input parameter in electrical 

load modeling depicted in figure 2.1. The grid structure and methodology for input parameters 

are described in [44]. The NSVI has been used for optimal distributed generation (DG) 

placement and load-shedding algorithms in literature [48,49]. The calculation of NVSI for a 

node number (𝑖) due to the EVCS placement is stated in (2.4). 
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𝑁𝑉𝑆𝐼𝑖 = √
∑ (𝑈k − 𝑈j)

2𝑛
𝑗=1

𝑛
 

∀𝑖 ∈ 𝑗  ∀𝑗 ∈ 𝑛 (2.4) 

Here, 𝑈j is the voltage at the jth node, and 𝑛 is the number of total nodes. 𝑈k is the nominal 

voltage and 𝑛 is the total number of nodes. The goal is to place the EVCS in the least sensitive 

nodes. Due to this, the node with the highest NVSI is the worst, and the node with the least 

NVSI is the best node for the EVCS connection. The appropriate location for the EVCS is 

calculated after the best and worst nodes are found using NVSI. If there is just one EVCS, the 

node with the lowest NVSI is the optimal spot to deploy the EVCS. For two or more EVCS, 

however, the optimal node configuration must be determined. This is because installing EVCS 

on some nodes, even those with low sensitivity might result in a significant voltage drop across 

the string. The following are the reasons behind this: 

❖ The EVCS-associated nodes may belong to the exact string. 

❖ The EVCS is deployed on a node that can only support the installation of EVCS in a 

certain configuration with other nodes.   

The configuration is defined as the arrangement of the number of EVCS over the available 

nodes. The monte-carlo simulation is deployed to identify the best configurations, as shown in 

figure 2.5. 

 

Figure 2.5 EVCS placement algorithm 

First of all, the best nodes based on the sorted NVSI are taken. Then samples of configuration 

for the best nodes are generated for the number of EVCS known from section 2.1.3. The 

possible configuration samples will equal the number of monte-carlo simulation runs. For each 

configuration, the voltage is recorded. The configuration sample resulted in the best possible 

voltage being treated as optimal. The configuration which gives a voltage below 380 V at any 

node is discarded. The best configuration of nodes for EVCS is decided based on the 
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quantification of voltages. The EV load behavior described in section 2.1.2 is used as input to 

depict the EVCS load. The more monte-carlo iteration searches, the more configuration are 

analyzed on the cost of higher computational time. For an EVCS placement, the installation of 

EVCS is subject to available places, e.g., parking places, and the use case, e.g., near markets 

or public transport. Due to this, there should be a variety of configuration results. Decision-

makers will then use these methods to know the suitable area and the electrical power nodes to 

power the EVCS. In the present study, the placement of EVCS is proposed in the ten best 

configurations, and the first configuration is used to place the EVCS. 

2.2 Optimization methodology 
The deterministic optimization is expected to be more cost-effective but cannot realize these 

uncertainties resulting in an un-robust or semi-robust microgrid. Due to this, stochastic 

microgrid planning and operation are proposed for the decision-makers, where the aim is a 

robust settlement area. The robustness will increase the cost of handling more uncertainties 

which is not a good solution. Due to this, the combined optimization model is proposed to get 

high robustness with minimum cost for planning a new settlement area. Microgrid planning 

and optimization are based on a novel concept for the growth of e-mobility infrastructure, 

which is performed with a planning horizon (𝑌) of 10 years and an operation horizon of 1 year. 

A 1-hour time step is used. It is assumed that the capital and operational cost will not change 

in the planning horizon. Furthermore, it is assumed that the electrical and heating grid structure 

will not be changed for the planning horizon. For optimal planning and operation, the cost 

parameter of the DERs used in the present study is given in table 2.2. 

Table 2.2 Cost parameter of DERs per year 

DERs Terms Values  

PV 
Capital cost 800 €/kW [50] 

life 20 years [51] 

Wind 
Capital cost 1460 €/kW [50] 

life 20 years [52] 

BESS 

Capital cost 528 €/kWh [53] 

life 8 years [53] 

Efficiency 95 % [54] 

TESS 

Capital cost 200 €/kWh [55] 

life 20 years [56] 

Efficiency 65% [57] 

HESS 
Capital cost 150 €/m3 [58] 

life 10 years [57] 

HP 
Capital cost 700 €/kW [59] 

life 20 years [60] 

Fuel cell 

Capital cost 5738 €/kW [61] 

life 60000 hours [62] 

Efficiency 60 % [63] 

Electrolyzer 

Capital cost 238 €/kW [64] 

life 60000 hours [64] 

Efficiency 70 % [63] 

EVCS Capital cost 10000 €/EVCS [65] 

 life 10 years [66] 
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The maintenance cost is assumed to be 1 percent of the capital cost [67]. The German 

government plans to increase the cost of CO2 [68]. The trend for the cost of CO2 per ton is 

given in figure 2.6. In the present study, it is assumed that the CO2 price will increase by 5 € 

per ton per year throughout the planning horizon in accordance with figure 2.6. The CO2 is 

supposed to be emitted from the conventional generation in the connected electricity grid. The 

CO2 emissions are expected to decrease yearly, as shown in figure 2.7. The average decrease 

in GHG was recorded as 4 percent per year from 1990 till 2021. Due to this, in the present 

study, it is assumed that this trend will continue to form the whole planning horizon. The 

penalty cost related to CO2 emission for the microgrid is associated with all DERs especially 

CO2 emitted during the manufacturing process. Moreover, the highest share is associated with 

the electricity grid. Due to this, the CO2 emission associated with the manufacturing process of 

DERs is ignored in the present study. 

 
Figure 2.6 Trend for the cost of CO2 per ton [68] Figure 2.7 GHG emission by electricity grid [69] 

 

 Deterministic optimization method 
The objective of the deterministic model is to decrease the investment cost 𝐶inv, operational 

cost 𝐶op and the penalty cost per ton of CO2 emissions 𝐶penalty, CO2 for the microgrid as given 

in (2.5). 

𝑀𝑖𝑛 ∑(𝐶inv + 𝐶op + 𝐶penalty, CO2)

𝑦

 ∀𝑦 ∈ 𝑌       (2.5) 

𝐶inv = 𝐶PV 𝑃PV, cap + 𝐶w 𝑃wind,cap + 𝐶EESS 𝐸EESS, cap + 𝐶HP 𝑃HP,cap

+ 𝐶TESS 𝐸TESS,cap + 𝐶FC 𝑃FC,cap + 𝐶elec 𝑃elec,cap + 𝐶H 𝐸HESS,cap 

 (2.6) 

𝐶op = ∑ 𝐶op, DERs

𝐷𝐸𝑅𝑠

𝑃DERs + ∑(𝐶grid𝑃grid

𝑡

) ∀𝑡 ∈ 𝑇 (2.7) 

𝐷𝐸𝑅𝑠 ∈ [𝑃𝑉, 𝑊𝐼𝑁𝐷, 𝐸𝐸𝑆𝑆, 𝐻𝑃, 𝑇𝐸𝑆𝑆, 𝐹𝐶, 𝐸𝐿𝐸𝐶, 𝐻𝐸𝑆𝑆]   

𝐶penalty, CO2 = 𝐶EM (𝐸𝑀grid ∑ 𝑃grid

𝑡

) 
∀𝑡 ∈ 𝑇 (2.8) 

𝐶grid is the energy import cost from the electrical grid in €/kWh. The emission intensity 

parameter for the electricity grid (𝐸𝑀grid) is assumed from figure 2.7. 𝐶EM is the cost of CO2 

emission and determined by figure 2.6. Based on the occupancy time, the number of EVCS is 

known from section 2.1, and the number of EVCS is incorporated in the energy balance 

constraint in the deterministic optimization model. For a fixed occupancy time, the capital cost 
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of the already-known number EVCS is added to the final cost of the microgrid after the 

optimization is solved.  The optimization is subject to the following constraints, 

𝑃PV(𝑡) + 𝑃w(𝑡) + 𝑃grid(𝑡) + 𝑃BD(𝑡) + 𝑃FC(𝑡) − 𝑃Load(𝑡) − 𝑃BC(𝑡)

− 𝑃elec(𝑡) − 𝑃HP,in(𝑡) − 𝑃EVCS(𝑡) = 0 

∀𝑡 ∈ 𝑇 (2.9) 

0 ≤ 𝐸ES(𝑡) ≤ 𝐸ES,cap      ,      0 ≤ 𝐸ES,cap ≤ 𝐸ES,max  (2.10) 

0 ≤ 𝑃DERs(𝑡) ≤ 𝑃DERs,cap     ,   0 ≤ 𝑃DERs,cap ≤ 𝑃DERs,max  (2.11) 

0 ≤ 𝛾1𝑃ES,ch(𝑡) ≤ 𝑃ES,cap      ,    0 ≤ 𝛾2𝑃ES,disch(𝑡) ≤ 𝑃ES,cap, 𝛾1 + 𝛾2 ≤ 1  (2.12) 

𝐸ES(𝑡 + 1) = 𝐸ES(𝑡) + 𝜂ES𝑃ES,ch(𝑡) −
𝑃ES,disch(𝑡)

𝜂ES
 

 (2.13) 

𝑆𝑂𝐶ES(𝑡) =
𝐸ES (𝑡)

𝐸ES,cap
, 𝐸𝑆 ∈ [𝐸𝐸𝑆𝑆, 𝑇𝐸𝑆𝑆, 𝐻𝐸𝑆𝑆] 

 (2.14) 

𝑄HP,out = 𝑆𝐶𝑂𝑃HP𝑃HP,in  (2.15) 

0 ≤ 𝑃w(𝑡) ≤ 𝑃w,n(𝑡)𝑃wind,cap   ,       0 ≤ 𝑃PV(𝑡) ≤ 𝑃Irr(𝑡)𝑃PV,cap  (2.16) 

𝐻2,out =
𝑃elec

𝐻low
𝜂elec , 𝑃FC = 𝐻low 𝐻2,FC 𝜂FC  ,  𝑄FC = 𝑃FC (

1 − 𝜂FC − 𝛩FC

𝜂FC
) 

 (2.17) 

𝐻2,HC + 𝐻2,FC − 𝐻2,out = 0  (2.18) 

The power production from the wind energy system is highly dependent on the wind speed 𝜈 

in m/s. Due to this, proximity must be considered in the process of input data selection. The 

capacity constraint for wind generation is given in (2.16). The constraint ensures that 

production is only available if the wind blows.  The active power output of the turbine 𝑃w is 

calculated based on the wind speed recorded data of DWD [70]. 𝑃w is calculated as given 

in (2.19) and then normalized by min-max normalization, which is the most frequent approach 

for data normalization [71]. The smallest value of the characteristics is turned into a zero, while 

the highest value is turned into a one using this procedure. The normalized wind power is given 

in (2.19) [71]. 

 𝑃w,n(𝑡) = 0.5𝜌w𝐴w𝐶p(𝜈(𝑡))3  (2.19) 

Here 𝜌w is the density of the air in kg/m3, 𝐶p is the betz value, and 𝐴w is the rotor area. The 

capacity limit constraints related to the wind generation model are given by (2.16). The rated 

PV production is calculated based on pre-establish methods in (2.20) [72]. The PV generation 

in a time step must not be greater than the allowed limit and respect the irradiance profile. The 

total PV area for the areas is given by (2.21) [72]. 

𝑃PV,max = 𝐺𝜂M𝑃R𝐴PV  (2.20) 

𝐴PV = 𝐴R 𝐺𝐶𝑅  (2.21) 

Where 𝐺 represents the horizontal irradiance in W/m2, 𝜂M refers to the solar module efficiency, 

𝑃R shows the complete system performance ratio and 𝐴PV is the total PV area. Solar irradiance 

depends on the solar modules' location, azimuth, and inclination. 𝐴R is the total roof area. 𝐺𝐶𝑅 

is the ground coverage ratio, and it is assumed as 75 percent. 

Power flow equations determine the voltage, power losses, and other technical aspects. 

However, the ordinary power flow equation consists of trigonometric functions. Due to this, 

these equations are non-convex and cannot be integrated into the optimization problem for 
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optimal global solutions. However, different methods exist to convexify power flow equations, 

such as semidefinite programming (SDP) and second-order cone programming (SOCP) [73]. 

M. E. Baran and F. F proposed the DistFlow model for radial networks and their linearization. 

The DistFlow model is significantly more numerically stable than the bus injection model, and 

its linearization provides simple analytical solutions. The branch flow is given (2.22). 

𝑃in = 𝑨(𝑃s) − 𝑨(𝐼n𝑅n) + 𝑩(𝑃s), 𝑄in = 𝑨(𝑄s) − 𝑨(𝐼n𝑋n) + 𝑩(𝑄s)  (2.22) 

Here 𝑅n, 𝑋n, 𝐼n  are the resistance, reactance, and current of the branch, respectively. The power 

injected 𝑃in at a node must be equal to the transfer to other nodes through branches 𝑃s. The 

incident matrix 𝑨 is the connecting matrix that contains the information of the branch 

connection going away from the node, while 𝑩 is the connecting matrix containing the 

information of the branch coming into the node. The introduction of squared node voltage 𝑈n 

and current 𝐼 magnitudes and relaxed DistFlow are given by [74,75]. 

𝑣n = |𝑈n|2        𝑙n = |𝐼n|2  (2.23) 

𝑣n+1 = 𝑣n − 2(𝑅n𝑃s + 𝑋n𝑄s) + (𝑅n
2 + 𝑋n

2)𝑙n  (2.24) 

A second-order cone programming (SOCP) approach is taken for this study to transform into 

convex, given as [72,75,76]. 

𝑙n ≤ 𝑙max  ,   𝑃s, min ≤ 𝑃s ≤ 𝑃s, max  , 𝑄s, min ≤ 𝑄s ≤ 𝑄s, max 𝑣min ≤ 𝑣n ≤ 𝑣max (2.25) 

𝑙n =
𝑃S

2 + 𝑄S
2

𝑣n
        ,         ‖

2𝑃S

2𝑄S

𝑙n − 𝑣n

‖

2

≤ 𝑙n + 𝑣n  (2.26) 

 Long-term uncertainty modeling using the information gap decision 

method (IGDM) 
The IGDM is a non-probabilistic decision theory for sorting alternatives and making decisions 

and judgments in the face of extreme uncertainties [76]. EVCS plays an important role in the 

microgrid planning an operation. The number of EVCS is still low. However, the rise in the 

EVCS is inevitable. In the current study, it is assumed that the number of EVCS is subjected 

to high uncertainty. If the uncertainty is considered too high, it will be assumed that no 

historical data, such as a probability distribution function, is available to generate an 

uncertainty set. The only available data is the forecasted number of EVCS. There is an 

information gap since there is a lack of historical beginning data to generate the uncertainty set 

for the growth in the EVCS. A limitation approach known as a bound method is necessary to 

determine the uncertainty region of information gaps uncertainty sets. In the current study, the 

envelope-bound method has been used to create the uncertainty set for the number of EVCS as 

modeled for the declining cost of the energy storage system described in [35,77]. Unlike robust 

optimization, the uncertainty set has one unknown variable, the uncertainty region or, more 

accurately, the radius of the uncertainty zone. The radius of the uncertainty region for the 

number of EVCS is called 𝛼EVCS in the present study. The 𝛼EVCS will show the gap between 

the predicted number of EVCS (𝑁EVCS) and the uncertain number of EVCS (𝑁̂EVCS). The radius 

of the uncertainty region needs to decrease or increase depending on the problem types (risk 

seeker or risk-averse). The decision-makers in this study are supposed to prioritize the safe and 

secure planning and operation of microgrids over maximizing paybacks. As a result, the notion 

is referred to as the risk-averse approach, and it should be expressed as the maximum of the 
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uncertainty region (𝛼EVCS). The envelope-bound formulation to create the uncertainty set for 

the number of EVCS is given in (2.27). 

𝛤(𝛼EVCS, 𝑁EVCS) = {𝑁̂EVCS: |
𝑁̂EVCS − 𝑁EVCS

𝑁EVCS
| ≤ 𝛼EVCS    

∀ 𝑁EVCS

∈ 𝛤(𝛼EVCS, 𝑁EVCS) 

(2.27) 

Here 𝛤 shows the uncertainty set and 𝑁̂EVCS is the uncertain variable that shows the rising trend 

of the EVCS in the planning years. To define the region of uncertainty for the number of EVCS, 

𝛼EVCS is bounded as given in (2.28). 

0 ≤ 𝛼EVCS ≤ 1  (2.28) 

A zero-uncertainty region (𝛼EVCS = 0) means that there is no uncertainty, and the predicted 

number of EVCS is equal to the actual number of EVCS. While full-uncertainty 

region (𝛼EVCS = 1) means that there is severe uncertainty, and the predicted number of EVCS 

is equal to the upper bound of the uncertainty region. The upper and lower bounds of the 

uncertainty region are bounded by an envelope, as shown in (2.29) [35]. All of the uncertainty 

associated with the number of EVCS is considered to have happened exclusively inside this 

region of the envelope.  

(1 − 𝛼EVCS)𝑁EVCS, ≤ 𝑁̂EVCS, ≤ (1 + 𝛼EVCS)𝑁EVCS  (2.29) 

When considering the uncertainty associated with the number of EVCS, the objective function 

for IGDM-based microgrid planning and operation is regarded as a risk-averse strategy and 

provided by (2.30).  

𝑀𝑎𝑥 𝛼EVCS  (2.30) 

The constraints of the optimization model are subject to component constraints given in 

section 2. The uncertainty region can be increased to any level as it is directly related to the 

number of EVCS installations. However, this resulted in high costs, which is not optimal. 

Finally, the robust region needs to be maximized while the cost needs to be minimized, which 

results in the two-level optimization problem. However, the cost objective can be transformed 

into a cost budget constraint which should be less than the allowed budget 𝑓𝑏 of the microgrid 

as given in (2.31), (2.32), and (2.33).  

∑(𝐶̂inv,y + 𝐶op,y + 𝐶penalty, CO2
)

𝑦

≤ 𝑓𝑏  (2.31) 

𝐶̂inv = 𝐶PV 𝑃PV,cap + 𝐶W 𝑃wind,cap + 𝐶EESS 𝐸EESS, cap + 𝐶HP 𝑃HP,cap + 𝐶TESS 𝐸TESS,cap

+ 𝐶FC 𝑃FC,cap + 𝐶elec 𝑃elec,cap + 𝐶H 𝐸HESS,cap

+ 𝐶EVCS(1 + 𝛼EVCS) 𝑁EVCS 

 (2.32) 

𝐶̂inv = 𝐶PV 𝑃PV, cap + 𝐶W 𝑃wind,cap + 𝐶EESS 𝐸EESS, cap + 𝐶HP 𝑃HP,cap + 𝐶TESS 𝐸TESS,cap

+ 𝐶FC 𝑃FC,cap + 𝐶elec 𝑃elec,cap + 𝐶EVCS𝑁EVCS + 𝐶EVCS𝛼EVCS𝑁EVCS 

 (2.33) 

𝐶̂inv is the investment cost after the consideration of uncertainty. The allowable budget is 

associated with the microgrid's deterministic cost, which is the objective function of the 

deterministic optimization model, as described in section 2.2.1. The allowable budget can also 

be tuned as per the requirement of the decision-makers. The minimum allowable budget is 

equal to the deterministic cost of the microgrid, while 100 percent is equal to two times the 

deterministic cost of the microgrid. In the stochastic optimization model, the number of 
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EVCS is decided by the optimization according to the involved uncertainties. Due to this, from 

equation (2.33), the term 𝛼EVCS𝑁EVCS are decision variables, due to which the optimization 

program becomes bilinear, resulting in mixed-integer non-linear programming with concave 

type problem. The bilinear terms have been linearized by the McCormick method [35,78]. The 

linearization of bilinear terms is linearized in the way described in [35]. 

3 Results and discussion 

3.1 Case study 
The proposed microgrid planning and operation strategy for e-mobility considering multi-type 

uncertainties has been applied to a settlement area planned in Magdeburg, Germany [79]. In 

the present study, the settlement is assumed to consist of twenty-five single-family 

houses (SFH) and six multi-family houses (MFH), with commercial real estate (CRE). From 

the person distribution, the settlement area consists of 249 persons. It is assumed that the 

settlement area is planned to be a grid-connected microgrid through a common coupling 

point (PCC) node. Microgrids may also be operated from a single node when linked to the local 

distribution network or transmission system [80].  

3.2 E-mobility infrastructure 

 Development of electric vehicles 
According to the "Mobilität in Deutschland" survey, the average number of cars in houses with 

one person, two persons, three persons, four persons, and five persons are 0.7, 1.3, 1.7, 1.8, and 

1.9, respectively [81]. According to this study, there will be 133 conventional vehicles present 

in the settlement area. It is assumed that all vehicles will be combustion engine-based vehicles 

in the settlement in 2021. According to the KBA (Germany's federal motor vehicle authority), 

Germany's total number of registered cars is 47,715,977, with 2,917,678 newly registered 

vehicles in 2020, including 394,632 electric vehicles [82]. The percentage of newly registered 

vehicles in total registered cars held by individuals was recorded as from 6.1 to percent 7.4 

percent in the last ten years [83,84]. Consequently, the percentage of newly registered vehicles 

in total registered cars held by individuals is 6.1 percent, with EVs accounting for 13.53 percent 

of newly registered vehicles. Applying this methodology to the settlement area under study, in 

2022, the number of newly registered vehicles in 2020 is expected to be 8, while the number 

of electric vehicles will be one. The newly registered vehicle is then replaced annually by EVs 

through retropolation in the planning horizon. The number of newly registered EVs from 2021 

to 2030 replacing the newly registered conventional vehicles. The number of EVs registered in 

the following year is added to the number of EVs present in the current year. The number of 

EVs in 2021 is zero. However, one EV will be registered in 2021, due to which the number of 

EVs in 2022 will be one. The number of EVs in the planning horizon is presented in figure 3.1. 

The population of the settlement area is expected to remain constant over the planning horizon. 

As a result, the number of conventional vehicles will remain unchanged. In the negative 

scenario, the share of the EV in 2031 will reach 12.4 percent at the end of the planning horizon. 

The yearly rise rate in the EV from 2022 to 2031 varies between 1.1 and 2 percent in the 

negative, 4.6 to 23.4 percent in the trend, and 7 to 59 percent in the positive. The number of 

EVs reaches 24 percent of conventional vehicles in the trend and 32.7 in the positive scenario 

in 2031. The trend scenario has been used to show the results of the proposed methods. 
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Figure 3.1 Number of newly EVs in the investigated settlement area 

 Development of private charging stations 
The number of electric vehicles is essential for the settlement area as the EVs are charged in 

the settlement area. From an economic perspective, EVs will charge from private charging 

stations 85 percent of the time [45]. Once the number of EVs is known, the EV behavior is 

simulated as per section 2.1.2. As the settlement area is residential, the EV parameters shown 

in section 2.1.2 follow the residential attributes as shown in figure 3.2.  

 
Figure 3.2 Number of EVs charging and their influence on the load of the settlement 

The EV starts charging immediately after arriving with a rated power of 11 kW for a private 

charging station. In the trend scenario for EV development in 2031, the simultaneous arrival of 

EVs for charging in the settlement area and their influence on settlement load are depicted in 

figure 3.2 for a particular day. Note that the number of EVs in the charging state on other days 
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will look different due to the use of the monte-carlo simulation method. On this day, 24 EVs 

out of 33 needed charging from the distributed private charging stations. From 4 pm to 7 pm, 

the settlement area had the most significant EVs charging simultaneously, approximately 75 

percent of the total EV. Due to this, the settlement area load has increased roughly 48 percent 

on the day. Since consumers arrive at home mostly at the same time in the evening, the EV will 

connect and detach nearly at the same time. The expected simultaneous charging in the 

settlement area for a year in the trend scenario in 2031 is shown in figure 3.3.  

 
Figure 3.3 Expected percentage of EVs in simultaneous charging state in trend scenario 

Most of the time years, 3 percent of EVs are charged at the same time. The largest proportion 

of EVs charging simultaneously is 34 percent, which occurs twice a year. The load varies in a 

considerably shorter time step in actuality (e.g., minutes/seconds resolution). Because EV 

arrivals would be more dispersed, simultaneous EV charging is expected to be significantly 

less in shorter time frames. The EVs coming at any moment within one hour are accumulated. 

The arrival of EVs is simulated at a 1-hour resolution because of a 1-hour resolution 

optimization hurdle. However, it is also believed that a 1-hour resolution for EV arrivals are 

enough for the current study, as the highest percentage of simultaneous charging rarely occurs 

in the year. 

 Development of public charging stations 
As indicated in section 3.3, EVs will charge from public charging stations 15 percent of the 

time [45]. Furthermore, an EVCS often consists of two columns so that two EVs can be charged 

simultaneously with the rated power of the EVCS. The following statements have been planned 

for the public charging station in the settlement area: 

❖ The number of EVCS based on occupancy time 

❖ The placement for EVCS 
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3.2.3.1 Number of EVCS based on occupancy time 

The optimal number of charging stations is determined based on the acceptable occupancy time 

of the EVCS, as described in section 2.1.3. The total number of EVs in the worst-case (positive 

scenario) rises from 1 to 43, and the occupancy time for EVs is displayed in figure 3.4. 

 
Figure 3.4 Occupancy time for EVCS=1 (left side) and EVCS=2 (right side) 

When EV users arrive at a specific time, they must wait while the EVCS is used. It is clear 

from figure 3.3 that the likelihood of simultaneous charging is high at a particular peak for the 

two EVs in public EVCS. The occupancy time is calculated as the sum of all EVs waiting for 

a charging slot. If the number of EVs is 33 in the 2031 trend scenario and the number of EVCS 

is 1, the final EV will have to wait around 20 hours for a charging spot. The installation of 

another EVCS reduces occupancy time by roughly 50 percent for most of the year. Table 3.1 

shows the occupancy time per day for increasing EVCS installation. If EVs are greater than 20, 

the occupancy time for the situation EVCS=1 reported in table 3.1 is much longer. The number 

of installed EVCS is represented as a heatmap when the total waiting time in hours for an EV 

is compared to the rise in the number, where high user comfort may be obtained at the cost of 

additional installation. If two EVCS are installed for a limited number of EVs, the occupancy 

time for the EV is zero. 

Table 3.1 Average EVCS occupancy time per day in hours 

Number of EV EVCS = 1 EVCS = 2 EVCS = 3 EVCS ≥ 4 

1-10 0 0 0 0 

10-20 0-0.35 0-0.02 0 0 

20-30 0.41-1.54 0.02-0.13 0 0 

30-40 1.61-3.55 0.15-0.54 0-0.06 0 

Over 40 3.81-6.76 0.67-1.45 0.15-0.42 0-0.039 

The anticipated EVCS for the planning Horizon is indicated in table 3.2 using an EVCS 

occupancy duration of fewer than 30 minutes as an acceptable value. 

Table 3.2 Number of EVCS for acceptance occupancy time of 30 minutes 

Scenario 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 

Negative 1 1 1 1 1 1 1 1 1 1 

Trend 1 1 1 1 1 1 1 2 2 3 

Positive 1 1 1 1 1 1 2 2 3 4 
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The arrival of EVs for charging is primarily influencing the occupancy time. The arrival of 

EVs is mainly noticed in the evening. The utilization of an EVCS by the number of EVs is an 

interesting parameter to be evaluated for a certain occupancy time. For an EVCS without any 

occupancy time, the EVs charged 15 percent of the time, as described in section 3.2. However, 

the utilization will change by introducing the occupancy time. The occupancy of less than 30 

minutes and the utilization of the number of EVCS for the trend scenario in 2031 are shown in 

figure 3.5. The utilization of the EVCS will increase with the number of EVs. 

Similarly, the increase in the EVs increases in the occupancy time. Due to this, the increase in 

the occupancy time increases the utilization of the EVCS. The utilization of the EVCS in terms 

of the number of hours in the year is 39.2 percent. Compared to the assumed value of 15 

percent, it is concluded that the occupancy time of 30 minutes will increase the utilization by 

24 percent more. Critically, the acceptability of this waiting time by the EVCS users is a barrier. 

 
Figure 3.5 Utilization of EVCS for less than 30 minute occupancy time 

However, the decision-making is based on an economic point of view as a trade-off between 

the lowest possible occupancy time and user acceptancy. Due to this, less occupancy time leads 

to less utilization which cannot be economical, and higher occupancy time leads to less 

acceptancy. From table 3.1 and figure 3.5, an occupancy time of less than 30 minutes seems 

ideal due to the economical utilization and comparable number of EVs per EVCS. 

3.2.3.2 Placement of public EVCS 

Typically, the best place to install a high load is near the transformers. However, this is true for 

a transformer with a single string. This microgrid electrical network consists of multiple strings. 

This leads to different influences if a new component is placed. In addition to the connection 

point, EVCS placement is subject to several criteria, including the available places to charge 

the EVs, such as park places, and suitable areas, such as proximity to markets and public 

transport. If the location of the EVCS place is known, the suitability of different connection 

nodes in other strings is investigated using the NVSI according to section 3.4. When the EVCS 

is put on node 1, its effect on voltage is not confined to that node but may be seen across the 

microgrid. As seen in equation (2.4), the NVSI examined the impact of an EVCS on all nodes 
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belonging to the settlement. The results for the NVSI of the various nodes are summarized in 

figure 3.6. 

 
Figure 3.6 NVSI for the settlement area 

The best connection point for an EVCS is the nodes with the lowest NVSI. In general, the 

nodes of a shorter string with fewer houses are preferable to a longer string with a more 

significant number of houses. However, not all nodes in the former string are insensitive to all 

nodes in the later string. From figure 3.6, the 2nd node of the first string shows higher NVSI 

than the 1st node of the second string. This concludes that the 2nd best location for an EVCS is 

the first node of string 2. Table 3.3 shows the ideal configuration for the trend scenario. 

Table 3.3 Configuration suggestion for trend scenario in 2031 

Knoten 1 2 3 4 5 6 7 8 9 10 

K1 1 1 1 1 1 1 1 0 0 0 

K14 1 1 0 1 0 0 0 1 1 0 

K2 1 0 1 0 1 0 0 1 0 0 

K3 0 0 0 1 0 1 0 0 0 1 

K15 0 1 0 0 1 1 1 0 0 0 

K4 0 0 1 0 0 0 0 0 0 1 

K5 0 0 0 0 0 0 1 0 1 0 

K16 0 0 0 0 0 0 0 1 0 0 

K6 0 0 0 0 0 0 0 0 1 0 

K7 0 0 0 0 0 0 0 0 0 1 

Ten nodes are qualified as best prospects nodes if their NVSI is less than 0.2. Once the optimum 

nodes for one EVCS have been identified, the ideal configurations for several EVCS are 

investigated. Each column of table 3.3 represents one configuration of EVCS placement. 

Finally, the first configuration is chosen to place EVCS for the investigated settlement area in 

2031, based on the optimum configuration from table 3.3.  

3.3 Deterministic microgrid planning and operation for e-mobility 
As the heat and electrical demand are defined, the microgrid consisting of DERs is optimally 

sized using the mixed-integer non-linear problem described in section 2.2. The optimization 
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results as a convex problem with mixed integer non-linear programming (MINLP) solved with 

the help of the gurobi solver, and the YALMIP tools box is used for formulation [85]. 

The planning is considered a multi-period where the capacities are decided yearly. The last 

year of the planning horizon can be seen as the final capacity for future planning. Any 

capacities for any year in this planning horizon are ideal. For instance, in a 5-year planning 

horizon, any capacities are optimal at the end of 5 years.  

 Microgrid DERs dimensions 
The EESS and TESS capacities are measured in kWh, whereas the generating units, heat pump, 

and electrolyzer are measured in kW, and the HESS is measured in m3. As seen in figure 3.7, 

generation sizes expand exponentially as the number of EVs increases. PV, wind, and EESS 

will reach their maximum capacity in 2026, and as EVs grow more prevalent, the fuel cell will 

rise to handle the larger load.  

 
Figure 3.7 Microgrid capacity 

Since the fuel cell creates heat and electricity, it has a larger capacity than the EESS. However, 

if the electric load grows due to the increase in EVs, the EESS gains more capacity. This is 

because the fuel cell is more costly, and the heat load is not changing in the planning horizon.  

Consequently, an increase in the electric vehicle sparked a slight increase in the fuel cell, 

resulting in a minor drop in the heat pump. The hydrogen storage and electrolyzer will also 

increase with the rise in the fuel cell. The community is situated in a residential part of the city. 

As a result, traditional large wind turbines are not viable to construct. 

On the other hand, small wind turbines must be put in communities to meet GHG reduction 

requirements. Small private wind turbines will not be able to be built in the examined settlement 

area since the houses are equipped with PV systems. As a result, medium-sized wind turbines 

with low noise and fewer areas are advised. A medium-sized wind turbine with a hub height of 

20 m and rated power of 15 kW is commercially available [86]. For district heating, the larger 

heat pumps, fuel cells, and TESS systems are available on a kW scale [87,88]. 

  Microgrid cost analysis 
The optimization objective of the deterministic approach defined in section 4.1 is to plan and 

operate with minimum cost. The settlement area's total cost includes investment, operational, 
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and emissions penalty costs. The total cost of the microgrid for the planning horizon for 

negative, trend, and positive scenarios is given in figure 3.8. 

 
Figure 3.8 Overall cost of the settlement area for different scenarios 

Due to the same number of EVs, the cost of the microgrid at the start of the planning horizon 

is nearly the same. As the number of electric vehicles increases toward the end of the planning 

horizon, the cost difference between scenarios will widen. In 2031, taking the trend scenario 

as a reference, this cost will be 12.6 percent lower in a negative scenario. The percentage of 

cost rise in 2031 for the positive scenario compared to the trend scenario is 32 percent in 2031. 

The increase in the settlement's overall cost per increase in the number of EVs is evaluated. It 

is observed that per EV will increase by 2.3 to 2.9 percent in the settlement cost. The 

comparison of the overall cost in terms of investment, operation, and penalty cost related to 

CO2 is shown in figure 3.9. In the trend scenario, investment costs generated 58.4 percent of 

the total cost, operating costs contributed 38.4 percent, and CO2 costs contributed just 3.1 

percent. From figure 3.9, the costs will follow the capacities. Due to this, it can be observed 

that the investment cost significantly influences the capacities. The operation cost comprises 

the electricity imported from the connected grid and the maintenance cost of DERs, which is 

assumed to be 1 percent of the capital cost of DERs. The investment cost will increase at a low 

rate till 2026, but after that, the number of EVs will increase more rapidly, resulting in a steep 

increase in capacities. The EVs are still rising till 2031, which needs to be fulfilled by the grid 

import. The penalty cost for CO2 emission is not increasing at a high rate because the emission 

cost certificate for CO2 is rising every year. The optimization tries to minimize it as much as 

possible. Compared to operation cost, the CO2 penalty cost is too low because the CO2 emission 

certificate cost per tonne is still too low in Germany. For that reason, CO2 cost is maybe not 

the best instrument to support local decentral DERs. The high number of EVs will increase the 

load, due to which the operational cost compared to CO2 emission cost will grow at a higher 

rate. This may become a barrier for a microgrid investment with the motivation of less CO2 

emissions. Due to this, the emission certificate cost needed to be increased to support higher 

renewables integration in the communities.  
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Figure 3.9 Cost analysis of microgrid 

Given that the distribution grid supplies all of the microgrid's energy needs, 190.5 MWh of grid 

energy must be obtained in the present situation. The required energy will cost 57,150 € or 

around 56.2 percent more than the optimally planned microgrid represented in figure 3.8. The 

cost of the CO2 emission penalty has also decreased from 857.2 € to 219.64 €, significantly 

reducing the carbon footprint. Similarly, for trend 2031, the cost of a microgrid without any 

DERs increases to 1,79,700 €, which has been reduced to 127,029 €. 

3.4 Microgrid planning and operation with stochastic optimization 
The increase in the EV and EVCS is inevitable, as described in section 2. The forecast is just 

based on the factors described in section 2. However, it is challenging to forecast these rises in 

the EVCS accurately because any of these factors may change. Based on the recent crises such 

as pandemics and shortages of semiconductor materials, EV production has been affected 

immensely, affecting the installation of EVCS. It is clear that the actual number of EV and 

EVCS installations has not been following the trends due to several reasons. This is predicted 

to have a significant impact on microgrid planning and operation. For the evaluation of the 

results, the trend scenario is considered. The microgrid is considered in a risk-averse 

manner (risk-avoiding). If the ability of the DERs of the microgrid to amount of uncertainties 

occurs defines the robustness of the microgrid. A best-case in terms of a risk-averse microgrid 

is when fewer uncertainties occur and vice versa. However, the uncertainties are 

uncontrollable, due to which the robustness of the microgrid should be planned. The envelope 

bound for the number of EVCS shows the boundary of the uncertainty region.  

The optimization aims to increase the robust region 𝛼EVCS concerning the allowed budget 𝑓b. 

The allowed budget is defined as the percentage increase in the cost of the microgrid achieved 

from the deterministic optimization. 𝑓b will be equal to the cost of the deterministic microgrid 

if the allowed budget is 1. The decision-maker can adjust this factor at the planning stage based 

on the amount of acceptance to pay more for the microgrid's robustness against uncertainty. 

The 𝛼EVCS will change depending on the specified 𝑓b and the highest attainable 𝛼EVCS will be 

the ultimate microgrid robustness against EVCS uncertainty. The robustness of the microgrid 

with the change in the allowable budget is shown in figure 3.10. It can be seen from figure 3.10 
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that the uncertainty region increases linearly with an increase in the allowable cost budget. A 

100 percent robust region can be achieved with an allowable budget of 1.8. 

 
Figure 3.10 Robust region versus allowable budget 

This means that 1.8 times (80 percent) more cost is needed for the microgrid to handle all 

uncertainties in the envelope. For an allowable budget equal to the deterministic cost, the 

microgrid has similar DERs capacities as computed in the deterministic optimization model. 

Considering the allowable budget equal to the deterministic cost, the microgrid has only 28.8 

percent of robustness under long-term uncertainty. A higher budget increased the capacities of 

the DERs to power the extra amount of EVCS, which will increase the robustness of the 

microgrid. The capacities of DERs for trend scenarios for a 100 percent robust (allowable 

budget of 1.8) are shown in figure 3.11.  

 
Figure 3.11 Microgrid capacities of trend scenario 

Uncertainties are unavoidable, but the number of uncertainties is difficult to estimate. As a 

result, a fully robust microgrid is proposed at a higher cost during the planning stage. It may 
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be more expensive to tackle these uncertainties economically and technically if the microgrid 

is designed for less resilience and more uncertainty occurs. The 80 percent increase in the 

microgrid's cost budget to meet the additional number of EVCS enhances the capacity of the 

PV and EESS. This increase in PV, wind, and EESS will ensure that the EVCS is powered 

more by renewable energy. Most of the long-term uncertainties occur at the end of the planning 

horizon. In these years, the PV and wind systems cannot be increased further due to the limits 

for integrating into the low voltage grids. Due to this, the capacity of the EESS and fuel cell 

increases more as compared to the deterministic approach. As the number of EVCS rises, the 

number of uncertainties increases. As illustrated in figure 3.11, the capacities increase in the 

same fashion. The heating equipment is not frequently changed because the heating grid and 

heating demand are consistent. The slight drop in the heat pump is caused by an increase in the 

fuel cell required to generate electric power due to uncertainties in conjunction with other 

generation units. The proposed method based on IGDM is highly recommended over the 

deterministic approach when there is a chance of the occurrence of long-term uncertainty, 

which cannot be realized through the deterministic optimization approach. The cost of a 100 

percent robust microgrid with DERs needs 80 percent more cost than a microgrid without any 

uncertainty. Furthermore, compared to a microgrid without any DERs, the cost is still greater 

by an amount of 48948.6 €, which is 37 percent. This amount must be included in the microgrid 

planning to avoid any problems that occur due to severe uncertainty. 

4 Conclusion and outlook 
In the scope of this study, a new holistic approach for microgrid planning and operation for e-

mobility under consideration of multi-type uncertainties was proposed and discussed. The 

scope of this study was to develop a cost-efficient, emission-effective, and technically sound 

microgrid from scratch for the development of e-mobility infrastructure, as well as to analyze 

the consequences of e-mobility-related uncertainties on the microgrid. 

Due to the motivation to address climate change, developing renewable energy sources, energy 

storage systems, and sector coupling technologies, also known as distributed energy resources, 

is inevitable in sectors such as electricity, heat, and industry. Similarly, the e-mobility 

infrastructure is developing rapidly as a result of this motivation. Renewable energy sources 

must power the e-mobility infrastructure to achieve environmental effectiveness over 

combustion engine vehicles. However, the existing power systems are not always capable of 

handling the additional power and adverse effects of large-scale deployment of e-mobility 

infrastructure.  

The methods were implemented in a case study of a new settlement area Alte-ziegelei 

Magdeburg, Germany. The settlement area is planned from scratch, where the statistics and 

available areas for PV systems with settlement demand are modeled. A microgrid based on the 

above-stated method is planned for a planning horizon of 10 years for the investigated 

settlement area. Based on people's acceptance, three scenarios (negative, trend, and positive) 

for the development of the number of electric vehicles are generated. Based on investment 

costs, operational costs, driving benefits, and other benefits, a projection for the percentage of 

EVs over conventional cars in 2026 is made. The rising rate of EVs is then retropolated till 

2026 and extrapolated till the end of the planning horizon. It was concluded that the number of 

EVs will be one in 2022, which will be raised to 17, 33, and 43 in negative, trend, and positive 

scenarios, respectively. At the end of the planned horizon, electric vehicles might constitute up 

to 31 percent of all vehicles. In the investigated settlement area, these EVs will be charged at 

home using private charging stations with a rated power of 11 kW and at public electric vehicle 

charging stations with a rated power of 22 kW. Based on the results for EVs behaviors from 
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the monte-carlo simulation, the EVs will increase the electrical load up to 48 percent on a 

particular day. Furthermore, because consumers arrive at their homes mostly at the same time 

in the evening, roughly 3 to 34 percent of all EVs might be charging simultaneously, resulting 

in a significant peak in the settlement load. In the trend scenario, the EV in the settlement area 

will require at least three EVCS by 2031, based on EVCS occupancy times of less than 30 

minutes. The planned three EVCS must be installed at the nodes with a node voltage-sensitive 

index (NVSI) of less than 0.2. Due to this, the optimal location for the public EVCS was 

concluded to be K1, K14, and K2. 

The investigated settlement area is optimally planned and operated using a deterministic 

optimization approach based on the rise in EVs. When comparing the negative, trend, and 

positive scenarios, the overall cost of the investigated settlement area decreased by 12.6 percent 

in the negative scenario and increased by 32 percent in the positive scenario. A rise per EV in 

the settlement area indicates a 2.3 to 2.9 percent increase in overall cost. The dimension of the 

DERs in the investigated settlement area for the trend scenario for 2031 is shown in table 4.1. 

Table 4.1 DERs dimension in 2031 for investigated settlement area 

DERs PV Wind EESS HP TESS FC Elec HESS 

Capacities 
224. 

kW 

100 

kW 

368.3 

kWh 

18.6 

kW 

12.8 

kWh 

56.0 

kW 

20.8 

kW 

52.3 

m3 

In the trend scenario, implementing these DERs in the settlement area needed an overall cost 

of 1,27,029 €. 58.4 percent of the cost is contributed by investment cost, 38.4 percent is 

contributed by operation cost, and only 3.1 percent is contributed by the CO2 penalty cost. To 

completely protect against long-term problems in the development of EVCS, the cost of the 

microgrid must be increased by 80 percent. When compared to a microgrid without any DERs, 

a decrease of 56.2 percent is seen.  

Considering the long-term uncertainties, it was concluded that the microgrid resulting from the 

deterministic approach is just 28 percent robust against the long-term uncertainty. Such low 

robustness will be risky in long-term planning. To achieve complete robustness, the cost of the 

microgrid needs to be increased by 80 percent. The increase in the cost resulted from the higher 

capacities needed to hedge the uncertainties. Due to this, the deterministic approach is 

considered to be better in terms of cost, and IGDM is recommended if the robustness against 

uncertainties needs to be planned. Additionally, a microgrid that is entirely resilient has seen 

costs increase by around 37 percent more as a result of severe uncertainties. Due to the 

robustness of the permitted budget of 80 percent, 66.7 percent of the cost has grown in 

comparison to the deterministic technique in the trend scenario in 2031. 
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Annex 

ALGORITHM: HOLISTIC METHOD FOR MICROGRID PLANNING AND OPERATION  

 Input: grid data (e.g., number of persons, loads, lines, nodes, transformer) 

 Declaration of input parameters: planning and operation horizon, scenarios, DERs limits, 

efficiencies, DERs cost and lifetimes, emission parameters, and so on) 

 Allocation of load profiles: electrical and heat load profiles 

 Interpolation: interpolation of data to match horizons 

 Declaration of varaibles: decision variables ( e.g capacities of DERs) 

 Integrate e-mobility infrastructure model: number of EV and EV charging behaviors and 

number of EVCS and placement nodes of EVCS  

 While (Y<planning horizon) 

  Emissions parameters: emissions intensity for the grid and certificate cost interpolation 

  While (T<operation horizon) 

   Solve deterministic optimization problem: solve for minimization of cost and 

emission with constraints for DERs model, electrical and heat grid, and energy 

balance 

   Iteration: jump to the next time step 

  End 

  While (T<operation horizon) 

   Solve IGDM-based stochastic optimization: solve for robustness while taking the 

resulted cost of microgrid from the deterministic optimization problem  

   Iteration: jump to the next time step 

  End 

  Iteration: jump to the next planning year 

 End 

 

ALGORITHM: E-MOBILITY INFRASTRUCTURE  

 Import the computed number of EV: retrolpolation method for computation 

 While (Y<planning horizon) 

  While (T<operation horizon) 

   Set the EVCS variables to zero: EV_charge, EV_waiting, and EV_charging 

   While (EV<total number of EVs) 

    Monte –carlo simulation: do a monte carlo simulation based on the 

distribution fit and random numbers for EV behaviors 

    While (EVCS< maximum number of possible EVCS) 

     Compute the occupancy time: occupancy and waiting time of EVs 

     Iteration: jump to the next EVCS 

    End 

    Iteration: jump to the next EV 

   End 

   Iteration: jump to the next time step 

  End 

  Iteration: jump to the next planning horizon 

 End 

 EVCS placement algorithm: run the monte-carlo simulation to the placement of EVCS  
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Figure A1 Method for calculation of occupancy time 

The EV has three states charged, waiting, or queuing for charging. Three variables represent 

the three states. 𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑒 variable holds the ID of EVs that require charging, 𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 

variable holds the ID of EVs already charging at the charging station, and the 𝐸𝑉_𝑤𝑎𝑖𝑡𝑖𝑛𝑔 

variable has the ID of EVs in the waiting queue from the previous time step. After setting those 

variables at the start of the iteration, the 𝐸𝑉_𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 state is checked first, as shown in 

figure A1 (left). If two EVs are charging, then the EVs arriving at that time are added to the 

waiting queue. If there is one EV charging, one slot is empty and is assigned from the waiting 

queue, if any, or from the EVs arriving at that time. After setting the EVs to an empty slot, 

updating variables for the next step is done, as shown in figure A1 (right). If there are no EVs 

charging, then two slots are empty, and already waiting EVs are given priority, and if there are 

any left, then EVs arriving at that time step are assigned.  


