001     1008319
005     20240116084316.0
024 7 _ |a 10.1002/adma.202301924
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-02281
|2 datacite_doi
024 7 _ |a 37199224
|2 pmid
024 7 _ |a WOS:001034368100001
|2 WOS
037 _ _ |a FZJ-2023-02281
082 _ _ |a 660
100 1 _ |a Chen, Shaochuan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Electrochemical Memristor‐Based Artificial Neurons and Synapses – fundamentals, applications, and challenges
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1701757969_8733
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Artificial neurons and synapses are considered essential for the progress of the future brain inspired computing, based on beyond von Neumann architectures. The present review provides a discussion on the common electrochemical fundamentals of biological and artificial cells, focusing on their similarities with the redox-based memristive devices. We present the driving forces behind the functionalities and the ways to control them by electrochemical-materials approach. Factors, such as chemical symmetry of the electrodes, doping of the solid electrolyte, concentration gradients and excess surface energy are discussed as essential to understand, predict and design artificial neurons and synapses. A variety of two and three terminal memristive devices and memristive architectures are presented and their application for solving various problems are shown. The work overviews the current understandings on the complex processes of neural signal generation and transmission in both biological and artificial cells and present the state-of-the-art applications, including signal transmission between biological and artificial cells. This example is showcasing the possibility for creating bioelectronic interfaces and integrating artificial circuits in biological systems. Prospectives and challenges of the modern technology towards low power, high information density circuits are highlighted.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhang, Teng
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tappertzhofen, S.
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Yang, Yuchao
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Valov, Ilia
|0 P:(DE-Juel1)131014
|b 4
|e Corresponding author
773 _ _ |a 10.1002/adma.202301924
|g p. 2301924
|0 PERI:(DE-600)1474949-X
|n 37
|p 2301924
|t Advanced materials
|v 35
|y 2023
|x 0935-9648
856 4 _ |u https://juser.fz-juelich.de/record/1008319/files/Invoice_RLNK505135657.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1008319/files/Invoice_RLNK505135667.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1008319/files/Invoice_RLNK505135944.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1008319/files/Advanced%20Materials%20-%202023%20-%20Chen%20-%20Electrochemical%E2%80%90Memristor%E2%80%90Based%20Artificial%20Neurons%20and%20Synapses%20Fundamentals%20.pdf
909 C O |o oai:juser.fz-juelich.de:1008319
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131014
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-16
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-21
915 _ _ |a IF >= 25
|0 StatID:(DE-HGF)9925
|2 StatID
|b ADV MATER : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21