001     1008330
005     20231027114406.0
024 7 _ |a 10.1109/LGRS.2023.3274493
|2 doi
024 7 _ |a 1545-598X
|2 ISSN
024 7 _ |a 1558-0571
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-02292
|2 datacite_doi
024 7 _ |a WOS:000995888700003
|2 WOS
037 _ _ |a FZJ-2023-02292
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Patnala, Ankit
|0 P:(DE-Juel1)186635
|b 0
|e Corresponding author
245 _ _ |a Generating Views Using Atmospheric Correction for Contrastive Self-Supervised Learning of Multispectral Images
260 _ _ |a New York, NY
|c 2023
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1689675119_6103
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In remote sensing, plenty of multispectral images are publicly available from various landcover satellite missions. Contrastive self-supervised learning is commonly applied to unlabeled data but relies on domain-specific transformations used for learning. When focusing on vegetation, standard transformations from image processing cannot be applied to the near-infrared (NIR) channel, which carries valuable information about the vegetation state. Therefore, we use contrastive learning, relying on different views of unlabeled, multispectral images to obtain a pretrained model to improve the accuracy scores on small-sized remote sensing datasets. This study presents the generation of additional views tailored to remote sensing images using atmospheric correction as an alternative transformation to color jittering. The purpose of the atmospheric transformation is to provide a physically consistent transformation. The proposed transformation can be easily integrated with multiple channels to exploit spectral signatures of objects. Our approach can be applied to other remote sensing tasks. Using this transformation leads to improved classification accuracy of up to 6%.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Deep Learning for Air Quality and Climate Forecasts (deepacf_20191101)
|0 G:(DE-Juel1)deepacf_20191101
|c deepacf_20191101
|f Deep Learning for Air Quality and Climate Forecasts
|x 1
536 _ _ |a Earth System Data Exploration (ESDE)
|0 G:(DE-Juel-1)ESDE
|c ESDE
|x 2
536 _ _ |a AI Strategy for Earth system data (kiste_20200501)
|0 G:(DE-Juel1)kiste_20200501
|c kiste_20200501
|f AI Strategy for Earth system data
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Stadtler, Scarlet
|0 P:(DE-Juel1)180752
|b 1
700 1 _ |a Schultz, Martin G.
|0 P:(DE-Juel1)6952
|b 2
700 1 _ |a Gall, Juergen
|0 0000-0002-9447-3399
|b 3
773 _ _ |a 10.1109/LGRS.2023.3274493
|g Vol. 20, p. 1 - 5
|0 PERI:(DE-600)2138738-2
|n 2502305
|p 1 - 5
|t IEEE geoscience and remote sensing letters
|v 20
|y 2023
|x 1545-598X
856 4 _ |u https://juser.fz-juelich.de/record/1008330/files/Invoice_APC600425249.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1008330/files/FZJ-2023-02292_1008330.pdf
909 C O |o oai:juser.fz-juelich.de:1008330
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186635
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180752
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE GEOSCI REMOTE S : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-25
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21