Hauptseite > Publikationsdatenbank > Generating Views Using Atmospheric Correction for Contrastive Self-Supervised Learning of Multispectral Images > print |
001 | 1008330 | ||
005 | 20231027114406.0 | ||
024 | 7 | _ | |a 10.1109/LGRS.2023.3274493 |2 doi |
024 | 7 | _ | |a 1545-598X |2 ISSN |
024 | 7 | _ | |a 1558-0571 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-02292 |2 datacite_doi |
024 | 7 | _ | |a WOS:000995888700003 |2 WOS |
037 | _ | _ | |a FZJ-2023-02292 |
041 | _ | _ | |a English |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Patnala, Ankit |0 P:(DE-Juel1)186635 |b 0 |e Corresponding author |
245 | _ | _ | |a Generating Views Using Atmospheric Correction for Contrastive Self-Supervised Learning of Multispectral Images |
260 | _ | _ | |a New York, NY |c 2023 |b IEEE |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1689675119_6103 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In remote sensing, plenty of multispectral images are publicly available from various landcover satellite missions. Contrastive self-supervised learning is commonly applied to unlabeled data but relies on domain-specific transformations used for learning. When focusing on vegetation, standard transformations from image processing cannot be applied to the near-infrared (NIR) channel, which carries valuable information about the vegetation state. Therefore, we use contrastive learning, relying on different views of unlabeled, multispectral images to obtain a pretrained model to improve the accuracy scores on small-sized remote sensing datasets. This study presents the generation of additional views tailored to remote sensing images using atmospheric correction as an alternative transformation to color jittering. The purpose of the atmospheric transformation is to provide a physically consistent transformation. The proposed transformation can be easily integrated with multiple channels to exploit spectral signatures of objects. Our approach can be applied to other remote sensing tasks. Using this transformation leads to improved classification accuracy of up to 6%. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a Deep Learning for Air Quality and Climate Forecasts (deepacf_20191101) |0 G:(DE-Juel1)deepacf_20191101 |c deepacf_20191101 |f Deep Learning for Air Quality and Climate Forecasts |x 1 |
536 | _ | _ | |a Earth System Data Exploration (ESDE) |0 G:(DE-Juel-1)ESDE |c ESDE |x 2 |
536 | _ | _ | |a AI Strategy for Earth system data (kiste_20200501) |0 G:(DE-Juel1)kiste_20200501 |c kiste_20200501 |f AI Strategy for Earth system data |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Stadtler, Scarlet |0 P:(DE-Juel1)180752 |b 1 |
700 | 1 | _ | |a Schultz, Martin G. |0 P:(DE-Juel1)6952 |b 2 |
700 | 1 | _ | |a Gall, Juergen |0 0000-0002-9447-3399 |b 3 |
773 | _ | _ | |a 10.1109/LGRS.2023.3274493 |g Vol. 20, p. 1 - 5 |0 PERI:(DE-600)2138738-2 |n 2502305 |p 1 - 5 |t IEEE geoscience and remote sensing letters |v 20 |y 2023 |x 1545-598X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1008330/files/Invoice_APC600425249.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1008330/files/FZJ-2023-02292_1008330.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1008330 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)186635 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)180752 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)6952 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-17 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-17 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b IEEE GEOSCI REMOTE S : 2022 |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-25 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-25 |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|