001008348 001__ 1008348
001008348 005__ 20231027114407.0
001008348 0247_ $$2doi$$a10.1063/5.0149955
001008348 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02294
001008348 0247_ $$2WOS$$aWOS:001023585200009
001008348 037__ $$aFZJ-2023-02294
001008348 082__ $$a600
001008348 1001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b0$$eCorresponding author$$ufzj
001008348 245__ $$aPhotocurrents, inverse Faraday effect, and photospin Hall effect in Mn2Au
001008348 260__ $$aMelville, NY$$bAIP Publ.$$c2023
001008348 3367_ $$2DRIVER$$aarticle
001008348 3367_ $$2DataCite$$aOutput Types/Journal article
001008348 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1695125674_12976
001008348 3367_ $$2BibTeX$$aARTICLE
001008348 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008348 3367_ $$00$$2EndNote$$aJournal Article
001008348 520__ $$aAmong antiferromagnetic materials, Mn2Au is one of the most intensively studied, and it serves as a very popular platform for testing various ideas related to antiferromagnetic magnetotransport and dynamics. Since recently, this material has also attracted considerable interest in the context of optical properties and optically-driven antiferromagnetic switching. In this work, we use first principles methods to explore the physics of charge photocurrents, spin photocurrents, and the inverse Faraday effect in antiferromagnetic Mn2Au. We predict the symmetry and magnitude of these effects and speculate that they can be used for tracking the dynamics of staggered moments during switching. Our calculations reveal the emergence of large photocurrents of spin in collinear Mn2Au, whose properties can be understood as a result of a non-linear optical version of the spin Hall effect, which we refer to as the photospin Hall effect, encoded into the relation between the driving charge and resulting spin photocurrents. Moreover, we suggest that even a very small canting in Mn2Au can give rise to colossal spin photocurrents that are chiral in flavor. We conclude that the combination of staggered magnetization with the structural and electronic properties of this material results in a unique blend of prominent photocurrents, which makes Mn2Au a unique platform for advanced optospintronics applications.
001008348 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001008348 536__ $$0G:(GEPRIS)437337265$$aDFG project 437337265 - Spin+Optik: Theoretischer Entwurf von antiferromagnetischer Optospintronik (A11) (437337265)$$c437337265$$x1
001008348 536__ $$0G:(GEPRIS)444844585$$aDFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585)$$c444844585$$x2
001008348 588__ $$aDataset connected to DataCite
001008348 7001_ $$0P:(DE-Juel1)200171$$aMerte, Maximillian$$b1$$ufzj
001008348 7001_ $$0P:(DE-Juel1)130643$$aFreimuth, Frank$$b2$$ufzj
001008348 7001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b3$$ufzj
001008348 7001_ $$0P:(DE-Juel1)186841$$aAdamantopoulos, Theodoros$$b4$$ufzj
001008348 7001_ $$0P:(DE-HGF)0$$aLux, F. R.$$b5
001008348 7001_ $$0P:(DE-Juel1)130895$$aPlucinski, Lukasz$$b6$$ufzj
001008348 7001_ $$0P:(DE-HGF)0$$aGomonay, O.$$b7
001008348 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b8$$ufzj
001008348 773__ $$0PERI:(DE-600)2722985-3$$a10.1063/5.0149955$$gVol. 11, no. 7, p. 071106$$n7$$p071106$$tAPL materials$$v11$$x2166-532X$$y2023
001008348 8564_ $$uhttps://juser.fz-juelich.de/record/1008348/files/Invoice_APM23-AR-EMAS2023-00192_01276.pdf
001008348 8564_ $$uhttps://juser.fz-juelich.de/record/1008348/files/071106_1_5.0149955.pdf$$yOpenAccess
001008348 8767_ $$8APM23-AR-EMAS2023-00192_01276$$92023-06-14$$a1200193987$$d2023-06-22$$eAPC$$jZahlung erfolgt$$zUSD 2750,-
001008348 909CO $$ooai:juser.fz-juelich.de:1008348$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001008348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b0$$kFZJ
001008348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)200171$$aForschungszentrum Jülich$$b1$$kFZJ
001008348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b2$$kFZJ
001008348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b3$$kFZJ
001008348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186841$$aForschungszentrum Jülich$$b4$$kFZJ
001008348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130895$$aForschungszentrum Jülich$$b6$$kFZJ
001008348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b8$$kFZJ
001008348 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001008348 9141_ $$y2023
001008348 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008348 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001008348 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001008348 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001008348 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
001008348 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008348 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2018-07-26T11:52:04Z
001008348 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2018-07-26T11:52:04Z
001008348 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
001008348 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-22
001008348 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008348 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2018-07-26T11:52:04Z
001008348 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-22
001008348 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPL MATER : 2022$$d2023-10-26
001008348 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001008348 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001008348 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001008348 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001008348 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001008348 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001008348 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPL MATER : 2022$$d2023-10-26
001008348 920__ $$lyes
001008348 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001008348 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001008348 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
001008348 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
001008348 980__ $$ajournal
001008348 980__ $$aVDB
001008348 980__ $$aUNRESTRICTED
001008348 980__ $$aI:(DE-Juel1)PGI-1-20110106
001008348 980__ $$aI:(DE-Juel1)IAS-1-20090406
001008348 980__ $$aI:(DE-82)080012_20140620
001008348 980__ $$aI:(DE-82)080009_20140620
001008348 980__ $$aAPC
001008348 9801_ $$aAPC
001008348 9801_ $$aFullTexts