Home > Publications database > Photocurrents, inverse Faraday effect, and photospin Hall effect in Mn2Au > print |
001 | 1008348 | ||
005 | 20231027114407.0 | ||
024 | 7 | _ | |a 10.1063/5.0149955 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2023-02294 |2 datacite_doi |
024 | 7 | _ | |a WOS:001023585200009 |2 WOS |
037 | _ | _ | |a FZJ-2023-02294 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Mokrousov, Yuriy |0 P:(DE-Juel1)130848 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Photocurrents, inverse Faraday effect, and photospin Hall effect in Mn2Au |
260 | _ | _ | |a Melville, NY |c 2023 |b AIP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1695125674_12976 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Among antiferromagnetic materials, Mn2Au is one of the most intensively studied, and it serves as a very popular platform for testing various ideas related to antiferromagnetic magnetotransport and dynamics. Since recently, this material has also attracted considerable interest in the context of optical properties and optically-driven antiferromagnetic switching. In this work, we use first principles methods to explore the physics of charge photocurrents, spin photocurrents, and the inverse Faraday effect in antiferromagnetic Mn2Au. We predict the symmetry and magnitude of these effects and speculate that they can be used for tracking the dynamics of staggered moments during switching. Our calculations reveal the emergence of large photocurrents of spin in collinear Mn2Au, whose properties can be understood as a result of a non-linear optical version of the spin Hall effect, which we refer to as the photospin Hall effect, encoded into the relation between the driving charge and resulting spin photocurrents. Moreover, we suggest that even a very small canting in Mn2Au can give rise to colossal spin photocurrents that are chiral in flavor. We conclude that the combination of staggered magnetization with the structural and electronic properties of this material results in a unique blend of prominent photocurrents, which makes Mn2Au a unique platform for advanced optospintronics applications. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 437337265 - Spin+Optik: Theoretischer Entwurf von antiferromagnetischer Optospintronik (A11) (437337265) |0 G:(GEPRIS)437337265 |c 437337265 |x 1 |
536 | _ | _ | |a DFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585) |0 G:(GEPRIS)444844585 |c 444844585 |x 2 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Merte, Maximillian |0 P:(DE-Juel1)200171 |b 1 |u fzj |
700 | 1 | _ | |a Freimuth, Frank |0 P:(DE-Juel1)130643 |b 2 |u fzj |
700 | 1 | _ | |a Go, Dongwook |0 P:(DE-Juel1)178993 |b 3 |u fzj |
700 | 1 | _ | |a Adamantopoulos, Theodoros |0 P:(DE-Juel1)186841 |b 4 |u fzj |
700 | 1 | _ | |a Lux, F. R. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Plucinski, Lukasz |0 P:(DE-Juel1)130895 |b 6 |u fzj |
700 | 1 | _ | |a Gomonay, O. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Blügel, Stefan |0 P:(DE-Juel1)130548 |b 8 |u fzj |
773 | _ | _ | |a 10.1063/5.0149955 |g Vol. 11, no. 7, p. 071106 |0 PERI:(DE-600)2722985-3 |n 7 |p 071106 |t APL materials |v 11 |y 2023 |x 2166-532X |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1008348/files/Invoice_APM23-AR-EMAS2023-00192_01276.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1008348/files/071106_1_5.0149955.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1008348 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)130848 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)200171 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130643 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)178993 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)186841 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130895 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130548 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2023 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-22 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2018-07-26T11:52:04Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2018-07-26T11:52:04Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-22 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-22 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2018-07-26T11:52:04Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APL MATER : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-26 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b APL MATER : 2022 |d 2023-10-26 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 2 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|