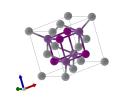


Application of Machine-Learning Models and XAI in Materials Science Using Magnetic DFT Data

Classifying Heusler compounds for potential industrial application

Robin Hilgers*†, Stefan Blügel*†, Daniel Wortmann†



r.hilgers@fz-juelich.de

INTRODUCTION

- Computational Materials Science: Predict macroscopic properties from molecular structure.
- Example: Predicting the material specific Curie temperature T_c for different Heusler alloys based on simulation data.¹
 ⇒Application in magnetic storage devices requires high T_c.
 ⇒Aim for a regression as well as a classification approach.
- · Challenge: Training data is sparse and expensive to get.

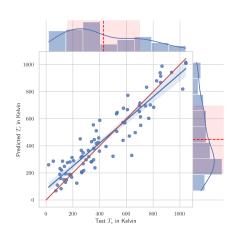
METHODS

Established - but computationally costly - way to predict T_c :

Our goal is to either replace both simulation steps or at least the MC step by ML algorithms.

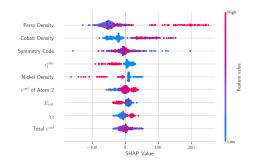
Input Features	ML-Models	Outputs
Structural Atomistic opt: Magnetic	Extra Trees Logistic Reg. LASSO	$ \begin{array}{c} $

Results



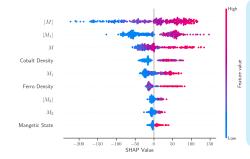
- Classification works well even without DFT/magnetic data.
- Regression requires DFT generated magnetic structure data.
- Using Shapley Additive exPlanation (SHAP) we could validate the magnetic compound properties are crucial for the T_c.²
- We published the developed code and the data we processed from the Heusler data base JuHemd.^{3,4}

Model	Test F1 Score	Test Accuracy
Extra Trees	0.90625	0.92683
Logistic Reg.	0.83871	0.87805



Conclusion

- False negative classification rate < 3% without DFT data
 ⇒Meets industry requirements for high-throughput screening.
- Physical insights can be derived from explainable models (XAI) which have no information about the underlying physics.



Future work

- Extending the materials space to general 2-D materials instead of picking a subclass. (In Progress)
- Predicting further magnetic material quantities using ML models e.g. screen for half-metallic properties (Paper in preparation)

REFERENCES

- . Kováčik, R., Mavropoulos, P. & Blügel, S. The JuHemd (Jülich-Heusler-magnetic-database) of the Monte Carlo simulated critical temperatures of the magnetic phase transition for experimentally reported Heusler and He
- 2. Lundberg, S. M. *et al.* From local explanations to global understanding with explainable AI for trees. *Nature Machine In-*
- Hilgers, R., Wortmann, D. & Blügel, S. ML-ready Curie temperatures and descriptors extracted from the JuHemd database.
- Hilgers, R., Wortmann, D. & Blügel, S. Data processing for the JuHemd database and ML-training and evaluation scripts.

^{*} Department of Physics, RWTH Aachen University, Aachen, Germany

[†] Institute of Advanced Simulation (IAS-1), Forschungszentrum Jülich, Jülich, Germany