001008353 001__ 1008353
001008353 005__ 20230818090930.0
001008353 0247_ $$2doi$$a10.24435/MATERIALSCLOUD:S4-3H
001008353 037__ $$aFZJ-2023-02299
001008353 041__ $$aEnglish
001008353 1001_ $$0P:(DE-HGF)0$$aBosoni, Emanuele$$b0
001008353 245__ $$aHow to verify the precision of density-functional-theory implementations via reproducible and universal workflows
001008353 260__ $$bMaterials Cloud$$c2023
001008353 3367_ $$2BibTeX$$aMISC
001008353 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1692342507_5201
001008353 3367_ $$026$$2EndNote$$aChart or Table
001008353 3367_ $$2DataCite$$aDataset
001008353 3367_ $$2ORCID$$aDATA_SET
001008353 3367_ $$2DINI$$aResearchData
001008353 520__ $$aIn the past decades many density-functional theory methods and codes adopting periodic boundary conditions have been developed and are now extensively used in condensed matter physics and materials science research. Only in 2016, however, their precision (i.e., to which extent properties computed with different codes agree among each other) was systematically assessed on elemental crystals: a first crucial step to evaluate the reliability of such computations. We discuss here general recommendations for verification studies aiming at further testing precision and transferability of density-functional-theory computational approaches and codes. We illustrate such recommendations using a greatly expanded protocol covering the whole periodic table from Z=1 to 96 and characterizing 10 prototypical cubic compounds for each element: 4 unaries and 6 oxides, spanning a wide range of coordination numbers and oxidation states. The primary outcome is a reference dataset of 960 equations of state cross-checked between two all-electron codes, then used to verify and improve nine pseudopotential-based approaches. Such effort is facilitated by deploying AiiDA common workflows that perform automatic input parameter selection, provide identical input/output interfaces across codes, and ensure full reproducibility. Finally, we discuss the extent to which the current results for total energies can be reused for different goals (e.g., obtaining formation energies). This data entry contains all data to reproduce the results, as well as the resulting curated all-electron dataset and the scripts to generate the figures of the paper.
001008353 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001008353 588__ $$aDataset connected to DataCite
001008353 650_7 $$2Other$$aDFT
001008353 650_7 $$2Other$$averification
001008353 650_7 $$2Other$$apseudopotentials
001008353 650_7 $$2Other$$aautomation
001008353 650_7 $$2Other$$aequation of state
001008353 650_7 $$2Other$$aMARVEL/P3
001008353 7001_ $$0P:(DE-HGF)0$$aBeal, Louis$$b1
001008353 7001_ $$0P:(DE-HGF)0$$aBercx, Marnik$$b2
001008353 7001_ $$0P:(DE-HGF)0$$aBlaha, Peter$$b3
001008353 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b4$$ufzj
001008353 7001_ $$0P:(DE-Juel1)165743$$aBroeder, Jens$$b5$$ufzj
001008353 7001_ $$0P:(DE-HGF)0$$aCallsen, Martin$$b6
001008353 7001_ $$0P:(DE-HGF)0$$aCottenier, Stefaan$$b7
001008353 7001_ $$0P:(DE-HGF)0$$aDegomme, Augustin$$b8
001008353 7001_ $$0P:(DE-HGF)0$$aDikan, Vladimir$$b9
001008353 7001_ $$0P:(DE-HGF)0$$aEimre, Kristjan$$b10
001008353 7001_ $$0P:(DE-HGF)0$$aFlage-Larsen, Espen$$b11
001008353 7001_ $$0P:(DE-HGF)0$$aFornari, Marco$$b12
001008353 7001_ $$0P:(DE-HGF)0$$aGarcia, Alberto$$b13
001008353 7001_ $$0P:(DE-HGF)0$$aGenovese, Luigi$$b14
001008353 7001_ $$0P:(DE-HGF)0$$aGiantomassi, Matteo$$b15
001008353 7001_ $$0P:(DE-HGF)0$$aHuber, Sebastiaan P.$$b16
001008353 7001_ $$0P:(DE-Juel1)176816$$aJanssen, Henning$$b17$$ufzj
001008353 7001_ $$0P:(DE-HGF)0$$aKastlunger, Georg$$b18
001008353 7001_ $$0P:(DE-HGF)0$$aKrack, Matthias$$b19
001008353 7001_ $$0P:(DE-HGF)0$$aKresse, Georg$$b20
001008353 7001_ $$0P:(DE-HGF)0$$aKühne, Thomas D.$$b21
001008353 7001_ $$0P:(DE-HGF)0$$aLejaeghere, Kurt$$b22
001008353 7001_ $$0P:(DE-HGF)0$$aMadsen, Georg K. H.$$b23
001008353 7001_ $$0P:(DE-HGF)0$$aMarsman, Martijn$$b24
001008353 7001_ $$0P:(DE-HGF)0$$aMarzari, Nicola$$b25
001008353 7001_ $$0P:(DE-Juel1)141860$$aMichalicek, Gregor$$b26$$ufzj
001008353 7001_ $$0P:(DE-HGF)0$$aMirhosseini, Hossein$$b27
001008353 7001_ $$0P:(DE-HGF)0$$aMüller, Tiziano M. A.$$b28
001008353 7001_ $$0P:(DE-HGF)0$$aPetretto, Guido$$b29
001008353 7001_ $$0P:(DE-HGF)0$$aPickard, Chris J.$$b30
001008353 7001_ $$0P:(DE-HGF)0$$aPoncé, Samuel$$b31
001008353 7001_ $$0P:(DE-HGF)0$$aRignanese, Gian-Marco$$b32
001008353 7001_ $$0P:(DE-HGF)0$$aRubel, Oleg$$b33
001008353 7001_ $$0P:(DE-HGF)0$$aRuh, Thomas$$b34
001008353 7001_ $$0P:(DE-HGF)0$$aSluydts, Michael$$b35
001008353 7001_ $$0P:(DE-HGF)0$$aVanpoucke, Danny E. P.$$b36
001008353 7001_ $$0P:(DE-HGF)0$$aVijay, Sudarshan$$b37
001008353 7001_ $$0P:(DE-HGF)0$$aWolloch, Michael$$b38
001008353 7001_ $$0P:(DE-Juel1)131042$$aWortmann, Daniel$$b39$$ufzj
001008353 7001_ $$0P:(DE-HGF)0$$aYakutovich, Aliaksandr V.$$b40
001008353 7001_ $$0P:(DE-HGF)0$$aYu, Jusong$$b41
001008353 7001_ $$0P:(DE-HGF)0$$aZadoks, Austin$$b42
001008353 7001_ $$0P:(DE-HGF)0$$aZhu, Bonan$$b43
001008353 7001_ $$0P:(DE-HGF)0$$aPizzi, Giovanni$$b44
001008353 773__ $$a10.24435/MATERIALSCLOUD:S4-3H
001008353 909CO $$ooai:juser.fz-juelich.de:1008353$$pVDB
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain$$b0
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Univ. Grenoble-Alpes, CEA, IRIG-MEM-L Sim, 38000 Grenoble, France$$b1
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland$$b2
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Materials Chemistry, Technical University of Vienna, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria$$b3
001008353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b4$$kFZJ
001008353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165743$$aForschungszentrum Jülich$$b5$$kFZJ
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165743$$a Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany$$b5
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Univ. Grenoble-Alpes, CEA, IRIG-MEM-L Sim, 38000 Grenoble, France$$b8
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain$$b9
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland$$b10
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Norwegian EuroHPC Competence Center, Sigma2 AS, Norway$$b11
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a SINTEF Industry, Materials Physics, Oslo, Norway$$b11
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, USA$$b12
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain$$b13
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Univ. Grenoble-Alpes, CEA, IRIG-MEM-L Sim, 38000 Grenoble, France$$b14
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut de la Matière Condensée et des Nanosciences (IMCN), Université catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium$$b15
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland$$b16
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a National Centre of Competence in Research (NCCR) Catalysis, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland$$b16
001008353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176816$$aForschungszentrum Jülich$$b17$$kFZJ
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Catalysis Theory (Cattheory), Department of Physics, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark$$b18
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Laboratory for Materials Simulations (LMS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland$$b19
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Vienna, Faculty of Physics and Center for Computational Materials Science, Kolingasse 14-16, A-1090 Vienna, Austria$$b20
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a VASP Software GmbH, Sensengasse 8, A-1090 Vienna, Austria$$b20
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Advanced Systems Understanding (CASUS) and Helmholtz-Zentrum Dresden-Rossendorf, D-02826 Görlitz, Germany$$b21
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Paderborn Center for Parallel Computing (PC2) and Center for Sustainable Systems Design, University of Paderborn, D-33098 Paderborn, Germany$$b21
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Molecular Modeling (CMM), Ghent University, Belgium$$b22
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a OCAS NV/ArcelorMittal Global R&D Gent, Pres. J. F. Kennedylaan 3, Zelzate B-9060, Belgium$$b22
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Materials Chemistry, Technical University of Vienna, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria$$b23
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Vienna, Faculty of Physics and Center for Computational Materials Science, Kolingasse 14-16, A-1090 Vienna, Austria$$b24
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a VASP Software GmbH, Sensengasse 8, A-1090 Vienna, Austria$$b24
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland$$b25
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Laboratory for Materials Simulations (LMS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland$$b25
001008353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141860$$aForschungszentrum Jülich$$b26$$kFZJ
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Dynamics of Condensed Matter, Chair of Theoretical Chemistry, University of Paderborn, D-33098 Paderborn, Germany$$b27
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a HPE HPC EMEA Research Lab, CH-4051 Basel, Switzerland$$b28
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut de la Matière Condensée et des Nanosciences (IMCN), Université catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium$$b29
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom$$b30
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan$$b30
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut de la Matière Condensée et des Nanosciences (IMCN), Université catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium$$b31
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut de la Matière Condensée et des Nanosciences (IMCN), Université catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium$$b32
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada$$b33
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Materials Chemistry, Technical University of Vienna, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria$$b34
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Molecular Modeling (CMM), Ghent University, Belgium$$b34
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Electromechanical, Systems and Metal Engineering, Ghent University, Belgium$$b35
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Molecular Modeling (CMM), Ghent University, Belgium$$b35
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ePotentia, Frans van Dijckstraat 59, 2100 Deurne Antwerpen, Belgium$$b35
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Electromechanical, Systems and Metal Engineering, Ghent University, Belgium$$b36
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute for Materials Research (IMO-IMOMEC), UHasselt - Hasselt University, Belgium$$b36
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Center for Catalysis Theory (Cattheory), Department of Physics, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark$$b37
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a University of Vienna, Faculty of Physics and Center for Computational Materials Science, Kolingasse 14-16, A-1090 Vienna, Austria$$b38
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a VASP Software GmbH, Sensengasse 8, A-1090 Vienna, Austria$$b38
001008353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131042$$aForschungszentrum Jülich$$b39$$kFZJ
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Swiss Federal Laboratories for Materials Science and Technology (Empa), nanotech@surfaces laboratory, CH-8600 Dübendorf, Switzerland$$b40
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland$$b41
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Laboratory for Materials Simulations (LMS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland$$b41
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland$$b42
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Chemistry, University College London, 20 Gordon St, Bloomsbury, London WC1H 0AJ, United Kingdom$$b43
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a The Faraday Institution, Didcot OX11 0RA, United Kingdom$$b43
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland$$b44
001008353 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Laboratory for Materials Simulations (LMS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland$$b44
001008353 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001008353 9141_ $$y2023
001008353 920__ $$lyes
001008353 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001008353 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001008353 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001008353 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
001008353 9201_ $$0I:(DE-Juel1)IAS-9-20201008$$kIAS-9$$lMaterials Data Science and Informatics$$x4
001008353 980__ $$adataset
001008353 980__ $$aVDB
001008353 980__ $$aI:(DE-Juel1)IAS-1-20090406
001008353 980__ $$aI:(DE-Juel1)PGI-1-20110106
001008353 980__ $$aI:(DE-82)080009_20140620
001008353 980__ $$aI:(DE-82)080012_20140620
001008353 980__ $$aI:(DE-Juel1)IAS-9-20201008
001008353 980__ $$aUNRESTRICTED