TY - CHART
AU - Bosoni, Emanuele
AU - Beal, Louis
AU - Bercx, Marnik
AU - Blaha, Peter
AU - Blügel, Stefan
AU - Broeder, Jens
AU - Callsen, Martin
AU - Cottenier, Stefaan
AU - Degomme, Augustin
AU - Dikan, Vladimir
AU - Eimre, Kristjan
AU - Flage-Larsen, Espen
AU - Fornari, Marco
AU - Garcia, Alberto
AU - Genovese, Luigi
AU - Giantomassi, Matteo
AU - Huber, Sebastiaan P.
AU - Janssen, Henning
AU - Kastlunger, Georg
AU - Krack, Matthias
AU - Kresse, Georg
AU - Kühne, Thomas D.
AU - Lejaeghere, Kurt
AU - Madsen, Georg K. H.
AU - Marsman, Martijn
AU - Marzari, Nicola
AU - Michalicek, Gregor
AU - Mirhosseini, Hossein
AU - Müller, Tiziano M. A.
AU - Petretto, Guido
AU - Pickard, Chris J.
AU - Poncé, Samuel
AU - Rignanese, Gian-Marco
AU - Rubel, Oleg
AU - Ruh, Thomas
AU - Sluydts, Michael
AU - Vanpoucke, Danny E. P.
AU - Vijay, Sudarshan
AU - Wolloch, Michael
AU - Wortmann, Daniel
AU - Yakutovich, Aliaksandr V.
AU - Yu, Jusong
AU - Zadoks, Austin
AU - Zhu, Bonan
AU - Pizzi, Giovanni
TI - How to verify the precision of density-functional-theory implementations via reproducible and universal workflows
PB - Materials Cloud
M1 - FZJ-2023-02299
PY - 2023
AB - In the past decades many density-functional theory methods and codes adopting periodic boundary conditions have been developed and are now extensively used in condensed matter physics and materials science research. Only in 2016, however, their precision (i.e., to which extent properties computed with different codes agree among each other) was systematically assessed on elemental crystals: a first crucial step to evaluate the reliability of such computations. We discuss here general recommendations for verification studies aiming at further testing precision and transferability of density-functional-theory computational approaches and codes. We illustrate such recommendations using a greatly expanded protocol covering the whole periodic table from Z=1 to 96 and characterizing 10 prototypical cubic compounds for each element: 4 unaries and 6 oxides, spanning a wide range of coordination numbers and oxidation states. The primary outcome is a reference dataset of 960 equations of state cross-checked between two all-electron codes, then used to verify and improve nine pseudopotential-based approaches. Such effort is facilitated by deploying AiiDA common workflows that perform automatic input parameter selection, provide identical input/output interfaces across codes, and ensure full reproducibility. Finally, we discuss the extent to which the current results for total energies can be reused for different goals (e.g., obtaining formation energies). This data entry contains all data to reproduce the results, as well as the resulting curated all-electron dataset and the scripts to generate the figures of the paper.
KW - DFT (Other)
KW - verification (Other)
KW - pseudopotentials (Other)
KW - automation (Other)
KW - equation of state (Other)
KW - MARVEL/P3 (Other)
LB - PUB:(DE-HGF)32
DO - DOI:10.24435/MATERIALSCLOUD:S4-3H
UR - https://juser.fz-juelich.de/record/1008353
ER -