001     1008353
005     20230818090930.0
024 7 _ |a 10.24435/MATERIALSCLOUD:S4-3H
|2 doi
037 _ _ |a FZJ-2023-02299
041 _ _ |a English
100 1 _ |a Bosoni, Emanuele
|0 P:(DE-HGF)0
|b 0
245 _ _ |a How to verify the precision of density-functional-theory implementations via reproducible and universal workflows
260 _ _ |c 2023
|b Materials Cloud
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Dataset
|b dataset
|m dataset
|0 PUB:(DE-HGF)32
|s 1692342507_5201
|2 PUB:(DE-HGF)
336 7 _ |a Chart or Table
|0 26
|2 EndNote
336 7 _ |a Dataset
|2 DataCite
336 7 _ |a DATA_SET
|2 ORCID
336 7 _ |a ResearchData
|2 DINI
520 _ _ |a In the past decades many density-functional theory methods and codes adopting periodic boundary conditions have been developed and are now extensively used in condensed matter physics and materials science research. Only in 2016, however, their precision (i.e., to which extent properties computed with different codes agree among each other) was systematically assessed on elemental crystals: a first crucial step to evaluate the reliability of such computations. We discuss here general recommendations for verification studies aiming at further testing precision and transferability of density-functional-theory computational approaches and codes. We illustrate such recommendations using a greatly expanded protocol covering the whole periodic table from Z=1 to 96 and characterizing 10 prototypical cubic compounds for each element: 4 unaries and 6 oxides, spanning a wide range of coordination numbers and oxidation states. The primary outcome is a reference dataset of 960 equations of state cross-checked between two all-electron codes, then used to verify and improve nine pseudopotential-based approaches. Such effort is facilitated by deploying AiiDA common workflows that perform automatic input parameter selection, provide identical input/output interfaces across codes, and ensure full reproducibility. Finally, we discuss the extent to which the current results for total energies can be reused for different goals (e.g., obtaining formation energies). This data entry contains all data to reproduce the results, as well as the resulting curated all-electron dataset and the scripts to generate the figures of the paper.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a DFT
|2 Other
650 _ 7 |a verification
|2 Other
650 _ 7 |a pseudopotentials
|2 Other
650 _ 7 |a automation
|2 Other
650 _ 7 |a equation of state
|2 Other
650 _ 7 |a MARVEL/P3
|2 Other
700 1 _ |a Beal, Louis
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bercx, Marnik
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Blaha, Peter
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 4
|u fzj
700 1 _ |a Broeder, Jens
|0 P:(DE-Juel1)165743
|b 5
|u fzj
700 1 _ |a Callsen, Martin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Cottenier, Stefaan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Degomme, Augustin
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dikan, Vladimir
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Eimre, Kristjan
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Flage-Larsen, Espen
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Fornari, Marco
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Garcia, Alberto
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Genovese, Luigi
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Giantomassi, Matteo
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Huber, Sebastiaan P.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Janssen, Henning
|0 P:(DE-Juel1)176816
|b 17
|u fzj
700 1 _ |a Kastlunger, Georg
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Krack, Matthias
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Kresse, Georg
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Kühne, Thomas D.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Lejaeghere, Kurt
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Madsen, Georg K. H.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Marsman, Martijn
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Marzari, Nicola
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Michalicek, Gregor
|0 P:(DE-Juel1)141860
|b 26
|u fzj
700 1 _ |a Mirhosseini, Hossein
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Müller, Tiziano M. A.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Petretto, Guido
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Pickard, Chris J.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Poncé, Samuel
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Rignanese, Gian-Marco
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Rubel, Oleg
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Ruh, Thomas
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Sluydts, Michael
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Vanpoucke, Danny E. P.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Vijay, Sudarshan
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Wolloch, Michael
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Wortmann, Daniel
|0 P:(DE-Juel1)131042
|b 39
|u fzj
700 1 _ |a Yakutovich, Aliaksandr V.
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Yu, Jusong
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Zadoks, Austin
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Zhu, Bonan
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Pizzi, Giovanni
|0 P:(DE-HGF)0
|b 44
773 _ _ |a 10.24435/MATERIALSCLOUD:S4-3H
909 C O |p VDB
|o oai:juser.fz-juelich.de:1008353
910 1 _ |a Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Univ. Grenoble-Alpes, CEA, IRIG-MEM-L Sim, 38000 Grenoble, France
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Institute for Materials Chemistry, Technical University of Vienna, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165743
910 1 _ |a Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)165743
910 1 _ |a Univ. Grenoble-Alpes, CEA, IRIG-MEM-L Sim, 38000 Grenoble, France
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Norwegian EuroHPC Competence Center, Sigma2 AS, Norway
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-HGF)0
910 1 _ |a SINTEF Industry, Materials Physics, Oslo, Norway
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics and Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, Michigan 48859, USA
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-HGF)0
910 1 _ |a Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
|0 I:(DE-HGF)0
|b 13
|6 P:(DE-HGF)0
910 1 _ |a Univ. Grenoble-Alpes, CEA, IRIG-MEM-L Sim, 38000 Grenoble, France
|0 I:(DE-HGF)0
|b 14
|6 P:(DE-HGF)0
910 1 _ |a Institut de la Matière Condensée et des Nanosciences (IMCN), Université catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium
|0 I:(DE-HGF)0
|b 15
|6 P:(DE-HGF)0
910 1 _ |a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
|0 I:(DE-HGF)0
|b 16
|6 P:(DE-HGF)0
910 1 _ |a National Centre of Competence in Research (NCCR) Catalysis, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
|0 I:(DE-HGF)0
|b 16
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)176816
910 1 _ |a Center for Catalysis Theory (Cattheory), Department of Physics, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
|0 I:(DE-HGF)0
|b 18
|6 P:(DE-HGF)0
910 1 _ |a Laboratory for Materials Simulations (LMS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
|0 I:(DE-HGF)0
|b 19
|6 P:(DE-HGF)0
910 1 _ |a University of Vienna, Faculty of Physics and Center for Computational Materials Science, Kolingasse 14-16, A-1090 Vienna, Austria
|0 I:(DE-HGF)0
|b 20
|6 P:(DE-HGF)0
910 1 _ |a VASP Software GmbH, Sensengasse 8, A-1090 Vienna, Austria
|0 I:(DE-HGF)0
|b 20
|6 P:(DE-HGF)0
910 1 _ |a Center for Advanced Systems Understanding (CASUS) and Helmholtz-Zentrum Dresden-Rossendorf, D-02826 Görlitz, Germany
|0 I:(DE-HGF)0
|b 21
|6 P:(DE-HGF)0
910 1 _ |a Paderborn Center for Parallel Computing (PC2) and Center for Sustainable Systems Design, University of Paderborn, D-33098 Paderborn, Germany
|0 I:(DE-HGF)0
|b 21
|6 P:(DE-HGF)0
910 1 _ |a Center for Molecular Modeling (CMM), Ghent University, Belgium
|0 I:(DE-HGF)0
|b 22
|6 P:(DE-HGF)0
910 1 _ |a OCAS NV/ArcelorMittal Global R&D Gent, Pres. J. F. Kennedylaan 3, Zelzate B-9060, Belgium
|0 I:(DE-HGF)0
|b 22
|6 P:(DE-HGF)0
910 1 _ |a Institute for Materials Chemistry, Technical University of Vienna, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
|0 I:(DE-HGF)0
|b 23
|6 P:(DE-HGF)0
910 1 _ |a University of Vienna, Faculty of Physics and Center for Computational Materials Science, Kolingasse 14-16, A-1090 Vienna, Austria
|0 I:(DE-HGF)0
|b 24
|6 P:(DE-HGF)0
910 1 _ |a VASP Software GmbH, Sensengasse 8, A-1090 Vienna, Austria
|0 I:(DE-HGF)0
|b 24
|6 P:(DE-HGF)0
910 1 _ |a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
|0 I:(DE-HGF)0
|b 25
|6 P:(DE-HGF)0
910 1 _ |a Laboratory for Materials Simulations (LMS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
|0 I:(DE-HGF)0
|b 25
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 26
|6 P:(DE-Juel1)141860
910 1 _ |a Dynamics of Condensed Matter, Chair of Theoretical Chemistry, University of Paderborn, D-33098 Paderborn, Germany
|0 I:(DE-HGF)0
|b 27
|6 P:(DE-HGF)0
910 1 _ |a HPE HPC EMEA Research Lab, CH-4051 Basel, Switzerland
|0 I:(DE-HGF)0
|b 28
|6 P:(DE-HGF)0
910 1 _ |a Institut de la Matière Condensée et des Nanosciences (IMCN), Université catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium
|0 I:(DE-HGF)0
|b 29
|6 P:(DE-HGF)0
910 1 _ |a Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
|0 I:(DE-HGF)0
|b 30
|6 P:(DE-HGF)0
910 1 _ |a Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
|0 I:(DE-HGF)0
|b 30
|6 P:(DE-HGF)0
910 1 _ |a Institut de la Matière Condensée et des Nanosciences (IMCN), Université catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium
|0 I:(DE-HGF)0
|b 31
|6 P:(DE-HGF)0
910 1 _ |a Institut de la Matière Condensée et des Nanosciences (IMCN), Université catholique de Louvain, Chemin des Étoiles 8, Louvain-la-Neuve 1348, Belgium
|0 I:(DE-HGF)0
|b 32
|6 P:(DE-HGF)0
910 1 _ |a Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
|0 I:(DE-HGF)0
|b 33
|6 P:(DE-HGF)0
910 1 _ |a Institute for Materials Chemistry, Technical University of Vienna, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
|0 I:(DE-HGF)0
|b 34
|6 P:(DE-HGF)0
910 1 _ |a Center for Molecular Modeling (CMM), Ghent University, Belgium
|0 I:(DE-HGF)0
|b 34
|6 P:(DE-HGF)0
910 1 _ |a Department of Electromechanical, Systems and Metal Engineering, Ghent University, Belgium
|0 I:(DE-HGF)0
|b 35
|6 P:(DE-HGF)0
910 1 _ |a Center for Molecular Modeling (CMM), Ghent University, Belgium
|0 I:(DE-HGF)0
|b 35
|6 P:(DE-HGF)0
910 1 _ |a ePotentia, Frans van Dijckstraat 59, 2100 Deurne Antwerpen, Belgium
|0 I:(DE-HGF)0
|b 35
|6 P:(DE-HGF)0
910 1 _ |a Department of Electromechanical, Systems and Metal Engineering, Ghent University, Belgium
|0 I:(DE-HGF)0
|b 36
|6 P:(DE-HGF)0
910 1 _ |a Institute for Materials Research (IMO-IMOMEC), UHasselt - Hasselt University, Belgium
|0 I:(DE-HGF)0
|b 36
|6 P:(DE-HGF)0
910 1 _ |a Center for Catalysis Theory (Cattheory), Department of Physics, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
|0 I:(DE-HGF)0
|b 37
|6 P:(DE-HGF)0
910 1 _ |a University of Vienna, Faculty of Physics and Center for Computational Materials Science, Kolingasse 14-16, A-1090 Vienna, Austria
|0 I:(DE-HGF)0
|b 38
|6 P:(DE-HGF)0
910 1 _ |a VASP Software GmbH, Sensengasse 8, A-1090 Vienna, Austria
|0 I:(DE-HGF)0
|b 38
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 39
|6 P:(DE-Juel1)131042
910 1 _ |a Swiss Federal Laboratories for Materials Science and Technology (Empa), nanotech@surfaces laboratory, CH-8600 Dübendorf, Switzerland
|0 I:(DE-HGF)0
|b 40
|6 P:(DE-HGF)0
910 1 _ |a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
|0 I:(DE-HGF)0
|b 41
|6 P:(DE-HGF)0
910 1 _ |a Laboratory for Materials Simulations (LMS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
|0 I:(DE-HGF)0
|b 41
|6 P:(DE-HGF)0
910 1 _ |a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
|0 I:(DE-HGF)0
|b 42
|6 P:(DE-HGF)0
910 1 _ |a Department of Chemistry, University College London, 20 Gordon St, Bloomsbury, London WC1H 0AJ, United Kingdom
|0 I:(DE-HGF)0
|b 43
|6 P:(DE-HGF)0
910 1 _ |a The Faraday Institution, Didcot OX11 0RA, United Kingdom
|0 I:(DE-HGF)0
|b 43
|6 P:(DE-HGF)0
910 1 _ |a Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
|0 I:(DE-HGF)0
|b 44
|6 P:(DE-HGF)0
910 1 _ |a Laboratory for Materials Simulations (LMS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
|0 I:(DE-HGF)0
|b 44
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
920 1 _ |0 I:(DE-Juel1)IAS-9-20201008
|k IAS-9
|l Materials Data Science and Informatics
|x 4
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-Juel1)IAS-9-20201008
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21