001     1008407
005     20250129092401.0
024 7 _ |a 10.1109/TGRS.2023.3275191
|2 doi
024 7 _ |a 0018-9413
|2 ISSN
024 7 _ |a 0196-2892
|2 ISSN
024 7 _ |a 1558-0644
|2 ISSN
024 7 _ |a WOS:001022035900022
|2 WOS
037 _ _ |a FZJ-2023-02332
082 _ _ |a 550
100 1 _ |a Steinbeck, Leon
|0 P:(DE-Juel1)164526
|b 0
|e Corresponding author
245 _ _ |a Calibration of a Stationary Multichannel GPR Monitoring System Using Internal Reflection Measurements
260 _ _ |a New York, NY
|c 2023
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1721023781_6762
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Advanced and extensive processing of ground-penetrating radar (GPR) data, for example, needed for full-waveform inversion approaches, requires a reliable temporal calibration of the system. Usually, the calibration of GPR systems is performed with a known medium between the transmitting and receiving antennas. Thereby, the observed time difference between the expected and measured signal arrival times, termed as time-zero, can be accounted for as a system-specific time delay. For measurement configurations where the antennas are permanently positioned around an object for monitoring purposes, time-consuming additional measurements where parts of the system need to be deinstalled would be required. This is not feasible for the proposed system. Therefore, novel calibration methods for such stationary monitoring systems are required to capture the temporal drift of time-zero. In this article, we present a novel calibration approach that uses internal signal reflections in the measurement system to derive the system-specific time delay without the necessity of knowing the medium between the antennas. We demonstrate that parasitic reflection and coupling signals can be used for accurate in situ calibrations. The presented approach is capable of identifying and correcting for the differences in hardware fabrication, while also correcting the temporal changes in time-zero during experiments. The presented approach is able to reduce the error in time-zero to below 25 ps, enabling high-resolution soil research. The presented approach is characterized by requiring no additional calibration setups or measurements since all the necessary data can be acquired during the original soil measurement.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mester, Achim
|0 P:(DE-Juel1)140421
|b 1
700 1 _ |a Zimmermann, Egon
|0 P:(DE-Juel1)133962
|b 2
700 1 _ |a Klotzsche, Anja
|0 P:(DE-Juel1)129483
|b 3
700 1 _ |a Van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 4
773 _ _ |a 10.1109/TGRS.2023.3275191
|g Vol. 61, p. 1 - 10
|0 PERI:(DE-600)2027520-1
|p 1 - 10
|t IEEE transactions on geoscience and remote sensing
|v 61
|y 2023
|x 0018-9413
856 4 _ |u https://juser.fz-juelich.de/record/1008407/files/Invoice_APC600426886.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1008407/files/Calibration_of_a_Stationary_Multichannel_GPR_Monitoring_System_Using_Internal_Reflection_Measurements.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1008407
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164526
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)140421
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133962
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)142562
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-03-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T GEOSCI REMOTE : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE T GEOSCI REMOTE : 2022
|d 2023-10-24
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 1
980 1 _ |a APC
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21