001008430 001__ 1008430
001008430 005__ 20240725202007.0
001008430 0247_ $$2doi$$a10.1016/j.matlet.2023.134039
001008430 0247_ $$2ISSN$$a0167-577X
001008430 0247_ $$2ISSN$$a1873-4979
001008430 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02338
001008430 0247_ $$2WOS$$aWOS:000939891500001
001008430 037__ $$aFZJ-2023-02338
001008430 082__ $$a670
001008430 1001_ $$00000-0001-6341-7741$$aSignor, Fernanda$$b0
001008430 245__ $$aSolution heat treatment of Ti-Nb alloys using a molten salt shield
001008430 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023
001008430 3367_ $$2DRIVER$$aarticle
001008430 3367_ $$2DataCite$$aOutput Types/Journal article
001008430 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721884035_32440
001008430 3367_ $$2BibTeX$$aARTICLE
001008430 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008430 3367_ $$00$$2EndNote$$aJournal Article
001008430 520__ $$aTi-Nb alloys have attracted growing attention for biomedical implant application due its low elastic modulus. Nb is a β-stabilizer in Ti alloys and retains its high biocompatibility. Thermal treatment plays a key role for optimization of mechanical properties and microstructure of Ti-Nb alloys. However, high oxygen affinity of Ti alloys requires the use of a protective atmosphere during their processing at high temperatures. In this context, we propose the use of molten salt as novel atmosphere protection during solution heat treatment of Ti-Nb alloys avoiding elaborated encapsulation. For that, Ti-Nb parts were solution treated in molten KCl followed by water quenching. Microstructure and phase transformation were evaluated by SEM, EDS, X-ray Diffraction, Elastic Modulus and Vickers microhardness measurements. No evidence of oxidation of Ti-Nb parts was found, which suggested that molten salt was an effective measure to protect Ti alloys from oxidation. After treatment, a martensitic microstructure was achieved. A martensitic structure enables to decrease elastic modulus to ca. 35 GPa, which can avoid stress shield in the case of bone implant application.
001008430 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001008430 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008430 7001_ $$0P:(DE-HGF)0$$aPereira, Jonas Felipe$$b1
001008430 7001_ $$0P:(DE-HGF)0$$aFaita, Fabrício Luiz$$b2
001008430 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b3$$ufzj
001008430 7001_ $$0P:(DE-Juel1)157632$$aDaudt, Natália de Freitas$$b4$$eCorresponding author
001008430 773__ $$0PERI:(DE-600)1491964-3$$a10.1016/j.matlet.2023.134039$$gVol. 338, p. 134039 -$$p134039$$tMaterials letters$$v338$$x0167-577X$$y2023
001008430 8564_ $$uhttps://juser.fz-juelich.de/record/1008430/files/20230125%20Revised%20Signor%20Daudt%20Bram.pdf$$yPublished on 2023-02-11. Available in OpenAccess from 2025-02-11.
001008430 909CO $$ooai:juser.fz-juelich.de:1008430$$pdriver$$pVDB$$pdnbdelivery$$popen_access$$popenaire
001008430 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b3$$kFZJ
001008430 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001008430 9141_ $$y2023
001008430 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-19
001008430 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001008430 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001008430 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-19
001008430 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER LETT : 2022$$d2023-08-24
001008430 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
001008430 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
001008430 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
001008430 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
001008430 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
001008430 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
001008430 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-24
001008430 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
001008430 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
001008430 920__ $$lyes
001008430 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001008430 980__ $$ajournal
001008430 980__ $$aVDB
001008430 980__ $$aI:(DE-Juel1)IEK-1-20101013
001008430 980__ $$aUNRESTRICTED
001008430 9801_ $$aFullTexts
001008430 981__ $$aI:(DE-Juel1)IMD-2-20101013