001008446 001__ 1008446
001008446 005__ 20231027114407.0
001008446 0247_ $$2doi$$a10.1002/adma.202300836
001008446 0247_ $$2ISSN$$a0935-9648
001008446 0247_ $$2ISSN$$a1521-4095
001008446 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02346
001008446 0247_ $$2pmid$$a37162226
001008446 0247_ $$2WOS$$aWOS:000984957200001
001008446 037__ $$aFZJ-2023-02346
001008446 082__ $$a660
001008446 1001_ $$0P:(DE-Juel1)130741$$aJones, Robert O.$$b0$$eCorresponding author$$ufzj
001008446 245__ $$aThe Myth of “Metavalency” in Phase‐Change Materials
001008446 260__ $$aWeinheim$$bWiley-VCH$$c2023
001008446 3367_ $$2DRIVER$$aarticle
001008446 3367_ $$2DataCite$$aOutput Types/Journal article
001008446 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1693304327_21677
001008446 3367_ $$2BibTeX$$aARTICLE
001008446 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008446 3367_ $$00$$2EndNote$$aJournal Article
001008446 520__ $$aPhase-change memory materials (PCMs) have unusual properties and important applications, and recent efforts to find improved materials have focused on their bonding mechanisms. “Metavalent bonding” or “metavalency,” intermediate between “metallic” and “covalent” bonding and comprising single-electron bonds, has been proposed as a fundamentally new mechanism that is relevant both here and for halide perovskite materials. However, it is shown that PCMs, which violate the octet rule, have two types of covalent bond: two-center, two-electron (2c-2e) bonds, and electron-rich, multicenter bonds (3c-4e bonds, hyperbonds) involving lone-pair electrons. The latter have bond orders less than one and are examples of the century-old concept of “partial” bonds.
001008446 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001008446 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008446 7001_ $$0P:(DE-HGF)0$$aElliott, Stephen R.$$b1
001008446 7001_ $$0P:(DE-HGF)0$$aDronskowski, Richard$$b2
001008446 773__ $$0PERI:(DE-600)1474949-X$$a10.1002/adma.202300836$$gp. 2300836$$n30$$p2300836$$tAdvanced materials$$v35$$x0935-9648$$y2023
001008446 8564_ $$uhttps://juser.fz-juelich.de/record/1008446/files/Advanced%20Materials%20-%202023%20-%20Jones.pdf$$yOpenAccess
001008446 8767_ $$d2023-06-20$$eHybrid-OA$$jDEAL
001008446 909CO $$ooai:juser.fz-juelich.de:1008446$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001008446 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130741$$aForschungszentrum Jülich$$b0$$kFZJ
001008446 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Physical and Theoretical Chemistry LaboratoryUniversity of OxfordOxford OX1 3QZ, UK$$b1
001008446 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Lehrstuhl für Festkörper- und Quantenchemie, Institut für AnorganischeChemieRWTH Aachen UniversityD-52056Aachen, Germany$$b2
001008446 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001008446 9141_ $$y2023
001008446 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008446 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001008446 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16
001008446 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-16$$wger
001008446 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16
001008446 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001008446 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008446 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001008446 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2022$$d2023-10-21
001008446 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001008446 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001008446 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001008446 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001008446 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
001008446 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001008446 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2022$$d2023-10-21
001008446 920__ $$lyes
001008446 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001008446 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001008446 980__ $$ajournal
001008446 980__ $$aVDB
001008446 980__ $$aUNRESTRICTED
001008446 980__ $$aI:(DE-Juel1)PGI-1-20110106
001008446 980__ $$aI:(DE-Juel1)IAS-1-20090406
001008446 980__ $$aAPC
001008446 9801_ $$aAPC
001008446 9801_ $$aFullTexts