001008450 001__ 1008450 001008450 005__ 20250203103205.0 001008450 0247_ $$2doi$$a10.3390/en16104084 001008450 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02350 001008450 0247_ $$2WOS$$aWOS:000998109300001 001008450 037__ $$aFZJ-2023-02350 001008450 082__ $$a620 001008450 1001_ $$0P:(DE-Juel1)186091$$aAarab, Fadoua$$b0$$eCorresponding author$$ufzj 001008450 245__ $$aDevelopment of Self-Passivating, High-Strength Ferritic Alloys for Concentrating Solar Power (CSP) and Thermal Energy Storage (TES) Applications 001008450 260__ $$aBasel$$bMDPI$$c2023 001008450 3367_ $$2DRIVER$$aarticle 001008450 3367_ $$2DataCite$$aOutput Types/Journal article 001008450 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714563877_354 001008450 3367_ $$2BibTeX$$aARTICLE 001008450 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001008450 3367_ $$00$$2EndNote$$aJournal Article 001008450 520__ $$aConcentrating solar power (CSP) and thermal energy storage (TES) based on molten salts still lacks economic feasibility, with the material investment costs being a major drawback. Ferritic stainless steels are a comparatively cheap class of materials that could significantly contribute to cost reductions. The addition of aluminum to ferritic steel can result in self-passivation by forming a compact Al2O3 top layer, which exhibits significantly higher corrosion resistance to solar salt compared to the Cr2O3 surface layers typically formed on expensive structural alloys for CSP and TES, such as austenitic stainless steels and Ni-base super alloys. However, to date, no ferritic stainless steel combining Al2O3 formation and sufficient structural strength is available. For this reason, cyclic salt corrosion tests under flowing synthetic air were carried out on seven Laves phase-forming, ferritic model alloys (17Cr2-14Al0.6-1Nb2.6-4W0.25Si), using “solar salt” (60 wt. % NaNO3 and 40 wt. % KNO3). The Al content was varied to investigate the influence on the precipitation of the mechanically strengthening Laves phase, as well as the impact on the formation of the Al-oxide top layer. The W and Nb contents of the alloys were increased to examine their influence on the precipitation of the Laves phase. The salt corrosion experiments demonstrated that simultaneous self-passivation against a molten salt attack and mechanical strengthening by precipitation of fine Laves phase particles is possible in novel ferritic HiperFerSCR (salt corrosion-resistant) steel. Microstructural examination unveiled the formation of a compact, continuous Al2O3 layer on the surface of the model alloys with Al contents of 5 wt. % and higher. Furthermore, a stable distribution of fine, strengthening Laves phase precipitates was achieved in the metal matrix, resulting in a combination of molten salt corrosion resistance and potentially high mechanical strength by a combination of solid solution and precipitation strengthening. These results show that high-strength ferritic alloys are suitable for use in CSP applications 001008450 536__ $$0G:(DE-HGF)POF4-1242$$a1242 - Concentrating Solar Power (CSP) (POF4-124)$$cPOF4-124$$fPOF IV$$x0 001008450 536__ $$0G:(BMWi)03EE5048D$$aVerbundvorhaben STERN: Steigerung der Kosteneffizienz von Flüssigsalzreceivern; Teilvorhaben: Entwicklung und Qualifizierung von Werkstoffen für Solarreceiver (03EE5048D)$$c03EE5048D$$x1 001008450 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001008450 7001_ $$0P:(DE-Juel1)129742$$aKuhn, Bernd$$b1 001008450 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en16104084$$gVol. 16, no. 10, p. 4084 -$$n10$$p4084 -$$tEnergies$$v16$$x1996-1073$$y2023 001008450 8564_ $$uhttps://juser.fz-juelich.de/record/1008450/files/energies-16-04084.pdf$$yOpenAccess 001008450 8767_ $$d2023-06-20$$eAPC$$jZahlung erfolgt 001008450 909CO $$ooai:juser.fz-juelich.de:1008450$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 001008450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186091$$aForschungszentrum Jülich$$b0$$kFZJ 001008450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129742$$aForschungszentrum Jülich$$b1$$kFZJ 001008450 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1242$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0 001008450 9141_ $$y2024 001008450 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set 001008450 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal 001008450 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12 001008450 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001008450 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12 001008450 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12 001008450 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001008450 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12 001008450 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2022$$d2023-10-25 001008450 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25 001008450 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25 001008450 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:57:23Z 001008450 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:57:23Z 001008450 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:57:23Z 001008450 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-25 001008450 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-25 001008450 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25 001008450 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25 001008450 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-25 001008450 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-25 001008450 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0 001008450 9801_ $$aAPC 001008450 9801_ $$aFullTexts 001008450 980__ $$ajournal 001008450 980__ $$aVDB 001008450 980__ $$aUNRESTRICTED 001008450 980__ $$aI:(DE-Juel1)IEK-2-20101013 001008450 980__ $$aAPC 001008450 981__ $$aI:(DE-Juel1)IMD-1-20101013