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particular, we show that adopting this view offers new perspec-
tives for constructing mathematical models for and interpreting
the results of Einstein-Podolsky-Rosen-Bohm experiments. We
first prove new Bell-type inequalities constraining the values of
the four correlations obtained by performing Einstein-Podolsky-
Rosen-Bohm experiments under four different conditions. The
proof is “model-free” in the sense that it does not refer to any
mathematical model that one imagines to have produced the
data. The constraints only depend on the number of quadru-
ples obtained by reshuffling the data in the four data sets
without changing the values of the correlations. These new
inequalities reduce to model-free versions of the well-known
Bell-type inequalities if the maximum fraction of quadruples
is equal to one. Being model-free, a violation of the latter by
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experimental data implies that not all the data in the four
data sets can be reshuffled to form quadruples. Furthermore,
being model-free inequalities, a violation of the latter by ex-
perimental data only implies that any mathematical model
assumed to produce this data does not apply. Starting from the
data obtained by performing Einstein-Podolsky-Rosen-Bohm
experiments, we construct instead of postulate mathematical
models that describe the main features of these data. The
mathematical framework of plausible reasoning is applied to
reproducible and robust data, yielding without using any concept
of quantum theory, the expression of the correlation for a system
of two spin-1/2 objects in the singlet state. Next, we apply
Bell's theorem to the Stern-Gerlach experiment and demonstrate
how the requirement of separability leads to the quantum-
theoretical description of the averages and correlations ob-
tained from an Einstein-Podolsky-Rosen-Bohm experiment. We
analyze the data of an Einstein-Podolsky-Rosen-Bohm experi-
ment and debunk the popular statement that Einstein-Podolsky-
Rosen-Bohm experiments have vindicated quantum theory. We
argue that it is not quantum theory but the processing of
data from EPRB experiments that should be questioned. We
perform Einstein-Podolsky-Rosen-Bohm experiments on a su-
perconducting quantum information processor to show that the
event-by-event generation of discrete data can yield results that
are in good agreement with the quantum-theoretical description
of the Einstein-Podolsky-Rosen-Bohm thought experiment. We
demonstrate that a stochastic and a subquantum model can also
produce data that are in excellent agreement with the quantum-
theoretical description of the Einstein-Podolsky-Rosen-Bohm
thought experiment.
© 2023 The Author(s). Published by Elsevier Inc. This is an open
access article under the CCBY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

All experiments which yield results in numerical form generate a finite amount of discrete data
represented by (ratios of) finite integers. Obviously, also algorithms running on digital computers
generate discrete data (a finite number of bits). The same can be said of analog simulations by
means of e.g., electronic circuits. In practice, the data gathered from these experiments also comes
in the form of a finite amount of sampled, discrete data, even though we often imagine them as
continuous.

In this paper, discrete data are considered to be immutable facts, free of personal judgment.
Of course, there first has to be a consensus among individuals that the discrete data are indeed
immutable facts. Once this consensus has been established these immutable facts constitute the
“reality”, the “real world” that we refer to in this paper. By adopting this very narrow definition of
“reality”, there is little room left for philosophical arguments about the nature of reality, realism
etc. [1]. In brief, experimental or computer generated data are considered as immutable facts,
constituting the “reality”. At the risk of overemphasizing the importance of taking this narrow
view of “reality”, it is necessary to carefully distinguish the definition of reality as immutable facts
adopted in this paper for the aim of analyzing specific scientific questions from the question “what
is reality really?”, which goes far beyond the scope of this paper.

We take the common view that a mathematical model (MM), that is a model formulated in the
language of mathematics, of (the process that generates) the data should provide a description of
the discrete data that is more concise than simply tabulating all the data. The MM should describe

2


http://creativecommons.org/licenses/by-nc-nd/4.0/

H. De Raedt, M.I. Katsnelson, M.S. Jattana et al.

Natural phenomena,

laboratory experiments

Computer experiments on
a digital computer
CMs

Discrete

data

Discrete

Continuum
classical physics:
Newtonian mechanics,...

M2Cs

data

Discrete

Discretization
data

Annals of Physics 453 (2023) 169314

Averages,
correlations,

Averages,
correlations,

Averages,
correlations,

Pseudo-random
number
generator

Discrete

data

Spectra,
averages,
correlations,

Compare
averages,
correlations,

©

Fig. 1.

Graphical representation of the view adopted in this paper.

the data or the relevant features thereof, either in terms of discrete data itself or, as is more common
in physics, by providing a function of one or more variables that fits well to the data. If possible, a
MM should also describe relations between features extracted from the data.

We distinguish between two classes of MMs. The first class (M1C) contains all MMs which
generate discrete data in a finite number of steps. MMs of this class can be represented by a
terminating algorithm running on a digital computer. Any such algorithm is an instance of a
computer model (CM), the acronym that will be used to refer to the first class of MMs. On the
other hand, as digital computers are physical devices on which numerical experiments are being
carried out, CMs can also be viewed as metaphors for real experiments in which all conditions
are known and under control (assuming the digital computer is operating flawlessly which, in
practice, is easily verified by repeating the numerical experiment) [2]. Furthermore, the logical
operation of the electronic digital computers we are all used to can equally well be realized by
a mechanical machine, albeit at great cost and great loss of efficiency. Thus, any CM executed on a
digital computer has, at least in principle, a macroscopic, mechanical equivalent. The second class
(M2C), symbolically represented in Fig. 1 by the green rectangle with rounded edges contains all
MMs that do not belong to M1C.

Most of the fundamental models in theoretical physics are based on the notions of the space-
time continuum and real numbers. After suitable discretization, the equations of classical physics
for Newtonian mechanics, Maxwell’s electrodynamics, special relativity, etc., produce discrete data
when these equations are solved numerically on a digital computer. Although the discretization
procedure is not unique, different procedures all share the property that they yield the same
continuum model. Thus, as indicated in Fig. 1, the relation between the MM and CM is bidirectional.

The transition from any probabilistic or quantum-theoretical model to discrete data requires
the use of an algorithm that is external to both these models. This transition is unidirectional.
Conceptually, these models are separated from the discrete data by a gap that takes the proportion
of an abyss. A probabilistic model is defined by its real-valued probability (density) measure on a
probability space [3,4]. It describes the probability (density) distribution of events [3,4]. Probability
theory does not contain a recipe/algorithm to generate the events. Adding such an algorithm, which
to make contact to the realm of discrete data is necessarily finite and terminating (e.g., a pseudo-
random number generator), fundamentally changes the mathematical structure of the probabilistic
model, turning it into an event-by-event simulation on a digital computer, a CM.
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In quantum theory, the state of the system is described by a vector (or density matrix) in an
abstract Hilbert space [5,6]. Quantum theory plus any of the interpretations allegedly explaining
the existence of the discrete, definite events encountered in real life faces a similar abyss. Also,
this M2C does not contain a recipe/algorithm to generate the events but, exactly as in the case of
probabilistic models, can be turned into CM by appealing to Born’s rule, a key postulate of quantum
theory. The existence of the named abyss proves itself through the fact that more than 100 years
after their conception, there seem to be irreconcilable differences in opinion about the interpretation
of probability [7] and quantum theory [8,9]. The conundrum of not being able to deduce within
the context of the latter theory that, in general, each measurement yields a definite outcome [8,9]
has, for a Curie-Weiss model of the measurement device, been shown to be amenable to detailed
analysis without invoking elusive concepts such as the wave function collapse [10-12].

From the foregoing, it is clear that discretizing differential equations or using of pseudo-random
number generators, maps M2Cs onto CMs. This category of CMs is “inspired” by M2Cs. In contrast,
there are CMs that are not based, also do not have any relation to, one of the M2Cs that are used
to describe physical phenomena. They are defined by specifying a set of rules, an algorithm. A
prominent example of such a CM is a pseudo-random number generator. Its algorithm consists
of a set of arithmetic operations, designed to create the illusion that the numbers being generated
are unpredictable. More generally, discrete event simulations belong to this category of CMs.

In many but not all cases, the discrete data generated by laboratory experiments, computer
experiments on a digital computer and classical physics model may directly be confronted with
each other, as indicated by the red rectangle containing the three discrete data boxes in Fig. 1. For
instance, we can compare the observed trajectory of a satellite with the numerical solution of the
classical equation of motion for that object.

In general, the comparison between experimental data and discrete data obtained from model
calculations is through averages, correlations, etc., that is through quantities that capture the salient
features of the discrete data. The applicability of the models is established a posteriori by comparing
their features with those of the laboratory experiment or, if the latter is not available, by comparing
features among models.

If the comparison is considered to be successful (by some necessarily subjective criterion), as
indicated by the smiley, the MM has been validated. If the MM does not describe the discrete data,
it is not “wrong” (assuming it is mathematically sound). Then, we have two options. First, following
common practice of all subfields of physics, we should try to include into the MM elements that are
of relevance to the real experiment but have been left out in the construction of the MM. Second,
like in the case of classical mechanics failing to describe relativistic mechanics, one has to come up
with a new MM, a task that is much more daunting than the first one.

With one exception, all the arrows in Fig. 1 are unidirectional. Therefore, if the comparison
between experimental data and a MM (e.g., a probabilistic or a quantum model) is found to be
unsatisfactory (by whatever criterion), it is a logical fallacy to conclude that one of the premises
underlying the MM must be “wrong”. The logically correct conclusion is that the predictions of the
MM in terms of averages, correlations, etc. do not agree. Of course, logically unjustified conclusions
may sometimes provide inspiration to construct other MMs that eliminate some or all of the
differences in their predictions.

Nevertheless, once the model has been validated, the assumption that the phenomenon, which
was the subject of the laboratory experiment, shares the same properties as the model is expressing
a belief, a logical fallacy of false analogy.

A recurring theme of this paper is that there is no direct relation between any of the properties of
CMs, MMs (all contained in the green area of Fig. 1), and those of natural phenomena or laboratory
experiments. In this view, there exists an impenetrable barrier between discrete data produced by
(computer) experiments and MMs designed to capture the salient features of these data, see Fig. 1.
Indeed, there is no reason why valid “theorems” derived from a MM should have a bearing on
“reality” represented by discrete data. The idea that they would have a bearing reminds us of the
“mind projection fallacy”, the assertion that one’s own thoughts and sensations are realities existing
in the world in which we live [7, p. 22].
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1.1. Some further thoughts on relations between “model” (theory) and “reality”

To the best of our knowledge, a view similar to the “mind projection fallacy” was first clearly
expressed in Heinrich Hertz’ last work “Die Prinzipien der Mechanik in neuem Zusammenhange
dargestellt (1894)” [13]. In the introduction, Hertz discussed the relation between object and ob-
server, subject and object, nature and culture, theory and practice. In the introduction he wrote [14]
“We form for ourselves mental pictures or symbols of external objects; and the form which we give
them is such that the necessary consequences of the pictures in thought are always the pictures
of the necessary consequences in nature of the things pictured”. Hertz's position represents a
significant departure from Galileo’s view that the “book of nature is written in geometric symbols”,
a position which does not assume that the mathematical symbols used in physical theories have
meaning outside these theories. The first lines of Ref. [15] read “Any serious consideration of
a physical theory must take into account the distinction between the objective reality, which
is independent of any theory, and the physical concepts with which the theory operates. These
concepts are intended to correspond with the objective reality, and by means of these concepts
we picture this reality to ourselves”, which seem to be in concert with Hertz’ view. An in-depth
discussion of the relevance of Hertz' view to the foundations of quantum theory can be found in
Ref. [16].

More generally, the essential part of the whole philosophy, from Ancient Greece to modern times,
is related to the problem of the adequacy of our worldview and its relation to “reality” (whatever
that “reality” means). Of course, it is far beyond both the scope of the paper and the expertise of
the authors to discuss this issue in its generality, but several remarks seem to be not only useful
but even necessary.

o There is a strong tendency to identify our description of reality, represented in a mathematical
way, with reality. Usually, this tendency is associated with the philosophy of Plato and his
followers but one can go even farther in the past, e.g., to Pythagoras. Importantly, this view
is still alive and quite popular among physicists and mathematicians, the philosophical views
of Heisenberg probably being the most striking example [17]. There are many varieties of this
worldview but, roughly speaking, mathematics is identified with the deepest level of “reality”.
Our physical world is supposed to be a shadow of this true, or supreme, reality.

e One advantage of this approach is obvious: “the unreasonable effectiveness of mathematics
in natural sciences” [18] is no longer a problem. Strangely enough, counterexamples to this
statement such as the famous Banach-Tarski paradox [19] are routinely ignored. In our
physical world, we cannot cut a ball into a finite number of pieces and reconnect them into a
ball twice the size of the original ball. This observation alone should force us to reconsider the
idea that the connection between the world of mathematical concepts and the physical world
are related in trivial way.

e Importantly enough, even accepting Plato’s main concept does not imply, in any way, that this
divine mathematics, this supreme reality, should coincide with our human mathematics. The
latter may be merely a projection, and the procedure of projecting could change dramatically
its character. There is some analogy with Bohr’s complementarity principle: an electron is
neither wave nor particle but these concepts naturally arise with our attempts to describe the
results of interaction of invisible micro objects like the electron with macroscopic measuring
devices [20]. We cannot go deeper into this analogy here but should mention that there is
also the complementarity of continuity and discreteness which seems to be an unavoidable
property of such a projection [20]. This is directly related to the fact that, as mentioned in the
beginning of the introduction, the results of physical experiments have finite precision and are
represented by discrete numbers.

o The previous observations imply that even if we take the idealistic positions in spirit of Plato
or Hegel philosophies, one needs to distinguish carefully between superior reality, whatever
rational and even mathematical it may be by itself, and its reflection in one’s mind, unavoidably
restricted by our own everyday experience, by our language reflecting this experience (“The
limits of my language mean the limits of my world” [21]) and by physiology of our bodies and
brains.
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o The Hertzian view on scientific theories as images of reality seems to be careful enough in this
respect. The rest depends on our general world view. For example, if we believe in evolution
and in the origin of our mind as a result of this evolution, these images should be correct, at
least to some significant degree. Indeed, our survival, as well as the survival of our ancestors,
heavily depends on them. This world view already enforces some quite strong restrictions on
the structure of both our mind and physical reality [22].

e However, the previous statement should not be misunderstood. What is required from the
internal image (world view) is its ability to make reasonably accurate predictions of the events
in the external world. The power of this ability is directly related to the requirement of the
robustness of the description. The latter lies at the base of our logical inference approach to
the foundations of quantum theory [23]. Also, the compactness of the representation of the
information about the external world is crucially important to limit resources necessary to
operate with this information. In our separation of conditions principle we use this idea to
construct the formal framework of quantum theory [24].

2. Structure of the paper

In this paper, we demonstrate by means of the application to Einstein-Podolsky-Rosen-Bohm
(EPRB) experiments and appeal to Bell’s theorem that building a one-way bridge from discrete
data to a MM eliminates all the problems of interpreting the results of EPRB experiments. The
reason for this is simple. Starting from the discrete data, immutable facts, instead of from imaginary
MMs which usually support very rich mathematical structures, there is no room for going astray in
interpretations.

We start by describing the discrete data obtained by both EPRB thought and laboratory ex-
periments, see Sections 3-5, and in Section 6, we present a new inequality for the correlations
computed from these data. The proof of this inequality does not depend on the existence of a
MM for the process that (one imagines having) produced the data. This inequality is “model free”,
involving discrete data only. Correlations obtained from EPRB experiments can never violate this
inequality. This inequality contains the Bell-CHSH inequality, valid for discrete data, as a special
case. A violation of the Bell-CHSH inequality by discrete data only indicates that not all the data
contributing to the correlations can be reshuffled to form quadruples, see Appendix A for the
definition of “quadruples”. It follows that any interpretation of a violation of the latter in terms of
an imagined physical process generating the data is a logical fallacy of the kind mentioned earlier. A
short note focusing on a derivation of this inequality for the simplest case can be found in Ref. [25].

The model-free inequality puts a constraint on correlations computed from the discrete data but
does not contribute to the theoretical modeling of the EPRB experiment. In this paper we system-
atically scrutinize various alternatives for constructing such models starting from the assumed or
imagined features of the discrete data of an EPRB experiment.

We start by constructing, as opposed to postulating, the quantum-theoretical description of the
EPRB experiment. First, in Section 7 we apply the elementary theory of plausible reasoning to data
obtained from reproducible and robust EPRB experiments and derive, without using any concept of
quantum theory, the expressions for the averages and the correlation for a system of two spin-1/2
objects in the singlet state. This approach builds a bridge between the discrete data produced by
experiment and a theoretical model but does not provide insight into the process that led to the
data.

Second, in Section 8, we demonstrate how the requirement of separability of the condition
under which the EPRB experiment is carried out leads to the quantum-theoretical description of
the averages and correlations obtained from an EPRB experiment. Remarkably, a crucial step in
this construction is the application of Bell’s theorem to the Stern-Gerlach experiment. Section 8.1
contains a discussion about the efficiency of quantum theory in terms of compressing data and
Section 8.2 presents a proof of a no-go theorem for quantum theory of two spins-1/2 objects. We
also identify the point at which interpretations of mathematical symbols that appear in MMs lose
contact with the reality, represented by discrete data.
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In Section 9 we confront the data of an EPRB experiment [26] with the quantum-theoretical
predictions for two spin-1/2 objects in the singlet state, debunking the popular statement that EPRB
experiments confirm these predictions [27-31]. We also argue that it is not quantum theory but
rather the practical realization of the EPRB experiments that should be questioned.

Section 10 presents results of EPRB-like experiments performed by means of a superconducting
quantum information processor and show that this event-by-event generation of discrete data yields
results that are in good agreement with the quantum-theoretical description of the EPRB thought
experiment.

Section 11 reviews non-quantum models (NQMs) that cannot (Sections 11.1 and 11.2) and can
(Sections 11.5 and 11.6) reproduce the averages and correlations of two spin-1/2 objects in the
singlet or product state. Additional examples can be found in Appendix L. We also provide an
alternative proof of Fine’s theorem [32,33] and discuss its implications in the light of the central
theme of this paper.

In Section 12, we summarize the key ideas and results of our work.

In the main text, we only address the main points. Technicalities of proofs and examples
illustrating the main points are given in the appendices.

Finally, a remark about the notation used throughout the paper: discrete data generated by a real
(computer) experiments, e.g., Ac n, are labeled by a subscript C specifying the condition under which
the data has been generated and a subscript to label the instance (n) of the data item. The data most
likely change if the condition C changes or the experiment is repeated. Note that this notation does
not refer to any particular MM. Objects that belong to the domain of MMs are regarded as functions
of the arguments that appear in parentheses, e.g., A(a, ).

3. Einstein-Podolsky-Rosen-Bohm thought experiment

The Einstein-Podolsky-Rosen thought experiment was introduced to question the completeness
of quantum theory [15], “completeness” being defined in Ref. [15]. Bohm proposed a modified
version that employs the spins-1/2 objects instead of coordinates and momenta of a two-particle
system [34]. This modified version, which we refer to as the Einstein-Podolsky-Rosen-Bohm (EPRB)
experiment, has been the subject of many experiments [26,35-42] and theoretical studies [1,31-
33,43-87].

The essence of the EPRB thought experiment is shown and described in Fig. 2. Performing the
EPRB thought experiment under the first condition defined by the directions (a, ¢) yields the data
set of pairs

D1 = {(A1n,Bin) |Ain, Bin=%1; n=1,...,N}, (1)

where N is the number of pairs emitted by the source. In this paper, we reserve the symbol A (B) for
representing discrete data (if it carries subscripts denoting conditions or a model function thereof
if it has arguments enclosed in parentheses) originating from stations 1 (2) of the EPRB experiment
shown in Fig. 2.

Repeating the EPRB thought experiment under the three conditions (a, d), (b, c), and (b, d) yields
the corresponding data sets D,, D3 and D4. We repeat once more that according to our notational
convention, the subscripts represent the condition under which the experiment has been performed.

The data sets D; for s = 1, 2, 3, 4 are imagined exhibiting the following features:

1. There is no relation between the numerical values of A, and A; v if n # n’ and similarly for B; ,
and B; ;. This implies that, based on the knowledge of all As ;.. and all Bs pm, it is impossible
to predict As , or Bs , with certainty. Similarly, it is impossible to predict with certainty As
or Bs m, knowing all Ay , or By , for all s’ # s and all n.

Inspired by the quantum-theoretical description of the EPRB thought experiment (see Ap-
pendix M), the data sets Ds for s = 1,2, 3,4 are imagined exhibiting the following additional
features:
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Ain,=+1 @ c = +1

Al,n = _1 Bl,TL = _1
Station 1 Station 2

Fig. 2. Conceptual representation of the Einstein-Podolsky-Rosen thought experiment [15] in the modified form proposed
by Bohm [34]. A source produces pairs of particles. The particles of each pair carry opposite magnetic moments implying
that there is a correlation between the two magnetic moments of each pair leaving the source. The magnetic field gradients
of the Stern-Gerlach magnets (cylinders) with their uniform magnetic field component along the directions of the unit
vectors a and ¢ divert each incoming particle into one of the two, spatially separated directions labeled by +1 and —1.
The pair (a, ¢) determines the conditions, to be denoted by the subscript “1”, under which the data (A1 ,, B1,,) is collected.
The values of A, , and By, correspond to the labels of the directions in which the particles have been diverted. The result
of this experiment is the set of data pairs Dy = {(A1.1, B1.1), ..., (A1.n, Bin)} where N denotes the total number of pairs
emitted by the source. Note that according to our notational convention, the subscript “1” stands for the condition under
which the experiment has been performed.

2. The averages and the correlation defined by

N N N
1 1 1
EM = v ;Am EQ = 5 ;Bs,n, EM?) = N ;As,nBs,na (2)

are invariant under simultaneous rotation of the Stern-Gerlach magnets, that is they can
only depend on the directions of Stern-Gerlach magnets through the scalar product of their
respective direction vectors.

3. The averages E{" ~ 0, E”) ~ 0, and correlations 5512) A —a-c, Eém ~ —a-d, Egm ~ —b-c
and E{"” ~ —b - d.

4. From 3, it follows that the data shows perfect anticorrelation (correlation), that is As, = —Bsn
(As.n = +Bs ) foralln = 1,..., N, if the directions of the Stern-Gerlach magnets are the same
(opposite).

4. Einstein-Podolsky-Rosen-Bohm laboratory experiment

An EPRB laboratory experiment is, of course, more complicated than the thought experiment. In
Fig. 3, we show a schematic of the EPRB experiment with photons performed by Weihs et al. [26,88].
In experiments with photons, the photon polarization plays the role of the spin-1/2 object in the
EPRB thought experiment depicted in Fig. 2 (see Section 7.1). Prominent features of this particular
experiment are that for each event that triggers the emission of photons by the source, binary
random numbers are used to select one of the two EOM settings and that all the time tags and
detector clicks are stored in files which can be analyzed long after the experiment has finished (as
we do in this paper, see Section 9).

A key element, not present in the thought experiment, is a procedure to identify pairs of particles.
Many EPRB experiments [26,35-37,88-90], use the t’s, the time tags, for coincidence counting. More
recent experiments use thresholds on the voltages generated by the transition edge detectors to
identify pairs [41,42]. In essence, in all cases, the identification procedure removes (a lot) of data
from the raw data sets [26,41,42,88-90]. As indicated in Fig. 3, this procedure yields data sets of
different size Ny, N3, N3, and Ny. In the following, to simplify the discussion and notation somewhat,

8
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D, = {(Al,i'Bl,i)lAl,irB1_i =+1,i =1, ...,Nl}

Dy = {(Az,j'BZ,j)lAz,j:Bz,j 1,j=1, ...,Nz}
D3 = {(AS.R'B3,k)|A3,k. B3,k =+1,k=1, ...,N3}
D, = {(A4.I»B4,l)|A4,l'B4,z =+1,1=1, ...,N4}

Fig. 3. Schematic diagram of an EPRB experiment with photons performed by Weihs et al. [26,88]. A source emits pairs
of photons in spatially separated directions. Photons arriving at station 1 pass through an electro-optic modulator (EOM)
which rotates the polarization of the photon that passes through it by an angle corresponding to the voltage applied to
that EOM. The latter is controlled by a binary variable ry ,, which is chosen at random [26,88]. The two different angles
to choose from in station 1 (2) are denoted by two-dimensional vectors a (b) and c (d). As the photon leaves the EOM, a
polarizing beam splitter directs the photon to either detector D, or detector D_;. Depending of the detection efficiency
(about 5% [26]), one of these detectors fires, producing either a signal x; , = +1 or a signal x;, = —1 and a time stamp
t1,n. Each triple (xq n, t1,4, T1,n) is written to a file. The same holds for photons arriving at station 2. After all data has been
written to the two files, that is when the experiment has finished, a time window W is used to remove all data that
does not satisfy a time-coincidence criterion [26,88]. The remaining data is organized in four data sets, corresponding to
the four different values of the pairs of random numbers (ry ,, 12,,). Note that the values of the A’s (B’s) that appear in
say D1 (Ds3). and those that appears in say D, may be different, even though they may have been recorded for the same
angle a (b). The four sets of discrete data Dy, Dy, D3, and D4 are the result of the experiment for the particular value
of the time-coincidence window W.

we truncate the four data sets by keeping only the first N = min(Ny, N, N3, N4) data pairs. The four
data sets then read (see also Fig. 3)

Ds = {(As,ru Bs,n) |As,nv Bs,n = =1 ;= 1, ey N}, (3)

where s = 1, 2, 3, 4 labels the different runs of the experiment.

The identification process is irrelevant for the material presented in this paper, except for
Section 9 and also for Sections 11.5 and 11.6 in which we briefly discuss a probabilistic M2C
and an event-by-event, cause-and-effect CM which describe, respectively generate the raw data
{Xin, tin, rin} for i = 1, 2 (see Fig. 3) and can reproduce the averages and the correlation obtained
from the quantum-theoretical description of the EPRB experiment. As indicated in Fig. 3, the data
that are subject to further analysis are only those that remain after the identification process has
played its part.
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4.1. What is the main issue?

The following is an attempt to explain the main issue without taking recourse to mathematics.
Therefore, some aspects which are important for a precise formulation of the issue have been left
out. They are mentioned in the sections that follow.

Referring to Fig. 2, imagine that the particle of a pair traveling to the left (right) is very close
to the leftmost (rightmost) magnet but has not yet interacted with it (we assume that there is no
faster-than-light communication between the particles). Also imagine that the distance between
the two Stern-Gerlach magnets is so large that light emitted by one particle will not arrive at the
other particle before both particles complete their journeys by arriving at one of the detectors.
Under these conditions, changing the direction of the left (right) magnet cannot have an effect on
the particle passing through the right (left) magnet. Thus, under these circumstances, knowledge
of A1.n's (B1,n's) value cannot affect By ,'s (A;,n’s) value. The picture of what happens to the particle
going left is completely separated from the picture of what happens to the particle going right.

Next, consider the case in which the directions of the two magnets are either parallel or
antiparallel, that is ¢ = +a. Then, according to the features of the data listed above,

1. the values of the A; , and By , for the nth pair, are unpredictable, randomly taking values +1.
2. The value of the product A; ;B1, = F1foralln=1,..., N pairs, depending on the direction
¢ = +a of the magnets.

Thus, even though the value of, say A; , is random, once it is known, because of the assumed perfect
(anti)correlation, see the above feature 2, the value of By, is known too, even before it is actually
recorded.

In 1964, Bell [43] presented a simple model that (i) describes the two-particle system in terms
of two separated one-particle systems and (ii) provides a picture of the observations that we have
just described. The two one-particle systems are separated in the sense that what happens to a
particle only depends on the direction of the Stern-Gerlach magnet with which it interacts and on
some variables that it shares with the other particle, the initial values of which are determined at
the time the particles leave the source.

In the same paper [43], Bell also proved his theorem (see Section 11.1 for a precise statement of
the theorem) stating that there does not exist a description in terms of two separated one-particle
systems that yields the correlation (—a - ¢) of two spin-1/2 objects in a singlet state. Thus, although
Bell's simple model can reproduce the main features listed in points 1 and 2 above, it fails to agree
with the quantum-theoretical description of the EPRB thought experiment.

The key question is then “what is the outcome of an EPRB laboratory experiment?” Instead of
generating data for many directions of the Stern-Gerlach magnets and comparing the correlation
with the quantum-theoretical result —a - ¢, it is easier to demonstrate a violation of the so-
called Bell-CHSH inequality (see Section 6), an inequality that Bell used to prove his theorem. The
argument is that any two-particle system which can be separated into two one-particle systems
as envisaged by Bell cannot violate a Bell-CHSH inequality. Therefore, the argument goes, if the
experimental data violates the Bell-CHSH inequality, the “separability principle”, which asserts that
any two spatially separated systems possess their own separate real states [91], or in Bell’s words,
that “mutually distant systems are independent of one another” [92], must be abandoned.

The main issue is that the logic of this argument is seriously flawed. The Bell-CHSH inequality
holds for some MMs but certainly not for experimental data (see Section 6). Thus, a violation of the
Bell-CHSH inequality by experimental data can only imply that this particular MM does not apply
to the experiment. Moreover, as shown in Section 9, the analysis of data obtained from an EPRB
laboratory experiment shows that (i) under suitable conditions, this experiment yields —a-c to good
approximation and (ii) by changing these conditions a little, that correlation becomes compatible
with the results of a separable, Bell-like model. From the viewpoint portrayed by Fig. 1, none of
the apparent conflicts is surprising. They all result from the idea that “theorems” derived in the
context of a MM have a bearing on the “reality” represented by experimental data. As mentioned
in Section 1, if a MM leads to the conclusion that there is a conflict with the “reality” represented
by experimental data, the appropriate course of action is to revise/extend/abandon the MM, not
immediately call into question the elementary concepts on which our picture-building of natural
phenomena is based.

10
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5. Description of discrete data: statistics

As the A’s and B’s with different indices n and different indices s are assumed to be unrelated,
the order in which data items appear is irrelevant for the characterization of the data set. In this
case, the (relative) frequencies by which a pair of values (x, y) (x,y = 41) appears in the data set
Eq. (1) are sufficient to characterize this data set. Formally, for the data collected under condition
s =1, 2, 3, 4, these frequencies are defined by

N
1
Z&msn sy = g 21+ XAsn)(1+YBsn). Xy = %1, (4)

n=1

where the Kronecker delta §;; takes the value one if the variables i and j are equal and is zero
otherwise. By construction 0 < fi(x,y) < 1 and Zxﬁy:ﬂfs(x,y) = 1. Frequencies, such as the one
defined by Eq. (4), are discrete-valued functions of the variables x and y which take discrete values
and are denoted as such, using the subscript “s” to indicate that the data has been collected under
the conditions represented by the symbol “s”. Frequencies belong to the domain of discrete data,
not to M2C.

As it is clear from Eq. (4), computing a frequency is a form of data compression. In this
particular case, computing the frequencies Eq. (4) compresses the whole data set Eq. (1) to three,
discrete-valued numbers (three instead of four because of the normalization).

From Eq. (4) it follows immediately that the averages and the correlation and their relation to
the frequencies Eq. (4) are given by

N
1
= 3 A= X ) -
n=1 x,y==+1
1 N
EY = ) Bua= ) vk o)
n= x,y==1
1 N
ED = =3 B = Y wAC) 9
n=1 x,y==+1

1+XE1)—|—yE(2)+xyE(u) 1+XE§1)1+yE§2) Xy (Es(lz)_Egl)Eéz))
fi(x,y) = 2 = 5 2 + 2 (5d)

showing that the frequencies Eq. (4) or the expectations Eﬁ”, Es(z), and Eﬁu)

terizations of the data in the set Eq. (3).

Later, we need the notion of “independence” and this is a good place to discuss this notion.
The two variables x and y are said to be independent if the frequency fs(x y) can be written in the
factorized form fi(x,y) = fs])(x|a c) (y|a c) wherefs ( )= (1 +ZE )/2 fori = 1,2 are the
marginal frequency distributions of f;(x, y). Eq. (5d) shows that x and y are independent if and only
if the correlation Eﬁm — ES(])ES(Z) = 0. In general, independence implies vanishing correlation [4] but
for two-valued variables the vanishing of correlations also implies independence.

Keeping the condition fixed, different data sets Ds that yield the same frequencies fi(x, y) are
equivalent in the sense that they yield the same values for the averages and the correlation.
Repeating an EPRB laboratory experiment with the same conditions is expected (see Section 7)
to yield numerical values of the frequencies f;(x, y) that are subject to statistical fluctuations which
decrease as the number of pairs N increases.

are equivalent charac-

6. Model-free inequality for correlations computed from discrete data

Motivated by the work of Bell [93] and Clauser et al. [94,95], many EPRB experiments [26,36,
37,39-42] focus on demonstrating a violation of the Bell-CHSH inequality [93,94]. To this end, one

11
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collects experimental data for four, well-chosen conditions denoted by 1, 2, 3 and 4, and computes
the corresponding correlations according to Eq. (5¢).

In Appendix B, we present a rigorous proof that for any (real or computer or thought) experiment
producing discrete data in the range [—1, +1], the correlations computed from the four data sets
Eq. (3) must satisfy the model-free inequalities

‘ﬁ?¢£ﬁﬂ+ﬁ§”i£ﬁﬂg4—2A, 6)

where 0 < A < 1 is the maximum fraction of quadruples that can be found by rearrang-
. . . . . . (12)
ing/reshuffling the data in Dy, D,, D3, and D4 without affecting the value of the correlations E;4”,

Egm, Egm, and Eflm. For a detailed description of the reshuffling procedure and the definition
of quadruples, see Appendix B. We emphasize that inequality Eq. (6) holds for discrete data
in the range [—1, +1], independent of how the data was generated and/or processed and, most
importantly independent of any MM. In essence, the upper bound 4 — 2 A in Eq. (6) results from the
fact that for every quadruple that we can create by reshuffling data pairs in each of the four data
sets, the contribution to the expression on the left hand side of Eq. (6) is limited in magnitude by
two, not by four.

The proof of Eq. (6) requires that the A’s and B’s that appear in the expressions of the correlations
take discrete values (ratios of finite integers) in the interval [—1, +1]. However, as mentioned in
Fig. 2, the data produced by an EPRB experiment is most conveniently represented by variables A
or B taking values +1 or —1 only. In other words, Eq. (6) covers both the case of data produced by
EPRB experiments and general discrete data in the range [—1, +1].

It is expedient to introduce the Bell-CHSH function

Sawsn = max |E'2 — E" 4 P+ 1P| (7)
(i,j,k,l)emy
where m, denotes the set of all permutations of (1, 2, 3, 4). By application of the triangle inequality,
it directly follows from Eq. (6) that for any (real or computer or thought) experiment producing
discrete data in the range [—1, +1],

Scush <4 —2A. (8)

The symbol A in Egs. (6)-(8) quantifies the structure in terms of quadruples exhibited by data
D1, D2, D3, and Dy. If A = 0, it is impossible to find a reshuffling that yields even one quadruple.
If A = 1, the four sets can be reshuffled such that they can be viewed as being generated from N
quadruples. Then we recover the “model-free” Bell-CHSH inequality for discrete data

Schsn < 2, (9)

usually derived within the context of a MM (see Appendix I) [93-96].

In Appendix B.5, we briefly discuss the extended EPRB experiment (EEPRB) [56,97] which always
generates data for which A = 1. Perhaps somewhat counterintuitive is that A < 1 if all the
A’s and B’s take independent random values +1, see Appendix B. In the case of interest, namely
Eglz) =-a-g Egm =-a.d, Eglz) = —b-c, and Efllz) = —b-d, the maximum value over all directions
a, b, c, d of the left-hand side of Eq. (6) is 2+/2 ~ 2.83 [98] (see Appendix M.4), implying that the
maximum fraction of quadruples which can be found in the data D4, D,, D3, and D4 must satisfy
A < 2—+/2 2~ 0.59. In Appendix B, we present simulation results obtained by generating four times
one million independent pairs according to the quantum-theoretical distribution of two spin-1/2
objects in the singlet state and obtain |E5]2) - E; 2)| + |E§12) +E‘(1m| ~ 2.83 and 4 — 2A = 2.83,
strongly suggesting that the value of quantum-theoretical upper bound 2+/2 is reflected in the
fraction of quadruples that one can find by reshuffling the data.

Suppose that the (post processed) data of an EPRB experiment yields Scysy > 2, that is the
data violates the Bell-CHSH inequality Eq. (9). From Eq. (8), it follows that A < 2 — Scysy/2 < 1
if Schsy > 2. Therefore, if Scysy > 2 not all the data in D, D,, D, and D, can be reshuffled such
that they originate from quadruples only. Indeed, the data produced by these experiments have
to comply with Eq. (6), and certainly not with the Bell-CHSH inequality. The reason is that the

12
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Bell-CHSH inequality is obtained from Eq. (6) in the exceptional case A = 1 in which all data
can be extracted from N quadruples.

In other words, all EPRB experiments which have been performed and may be performed
in the future and which only focus on demonstrating a violation of Eq. (9) merely provide
evidence that not all contributions to the correlations can be reshuffled to form quadruples
(yielding A < 1). These violations do not provide a clue about the nature of the physical
processes that produce the data.

More specifically, Eq. (6) holds for discrete data, rational numbers in the range [—1, +1],
irrespective of how the data sets Eq. (3) were obtained. Inequality (6) shows that correlations of
discrete data violate the Bell-CHSH inequality Eq. (9) only if not all the pairs of data in Eq. (3)
can be reshuffled to create quadruples. The proofs of Egs. (6) and (9) reflect a certain structure in

"o ” o«

the data. They do not refer to notions such as “locality”, “realism”, “non-invasive measurements”,
“action at a distance”, “free will”, “superdeterminism”, “complementarity”, etc. Logically speaking,
a violation of Eq. (9) by experimental data cannot be used to argue about the relevance of one or
more of these notions used as motivation to formulate mathematical models of the process that
generated the experimental data.

A violation of the original (non model-free) Bell-CHSH inequality S < 2 may lead to a variety of
conclusions about certain properties of a MM for which this inequality has been derived. However,
projecting these logically correct conclusions about the MM, obtained within the context of that
MM, to the domain of EPRB laboratory experiments requires some care, as we now discuss.

The first step in this projection is to feed real-world, discrete data (rational numbers in the range
[—1, 4+1]) into the original Bell-CHSH inequality S < 2 derived, not for discrete data as we did by
considering the case A = 1 in Eq. (8), but rather in the context of some mathematical model, and
to conclude that this inequality is violated. Considering the discrete data for the correlations as
given, it may indeed be tempting to plug these rational numbers into an expression obtained from
some mathematical model. However, then it is no longer clear what a violation actually means
in terms of the mathematical model because the latter (possibly by the help of pseudo-random
number generators) may not be able to produce these experimental data at all. The second step is
to conclude from this violation that the mathematical model cannot produce the numerical values
of the correlations, implying that the mathematical model simply does not apply and has to be
replaced by a more adequate one or that one or more premises underlying the mathematical model
must be wrong. In the latter case, the final step is to project at least one of these wrong premises
to properties of the world around us.

The key question is then to what extent the premises or properties of a mathematical model
can be transferred to those of the world around us. Based on the rigorous analysis presented in
this paper, the authors’ point of view is that in the case of laboratory EPRB experiments, they
cannot.

Using only Eq. (6), the logically and mathematically correct conclusion one can draw on the
basis of the correlations computed from these data obtained under conditions (1, 2, 3, 4) (listed in
Section 3) is that a fraction of the experimental data Eq. (3) can be reshuffled to create quadruples.
However, Eq. (6) and the conclusions drawn from it do not significantly contribute to the modeling
of the EPRB experiment as such. To this end, we need to develop MMs that describe the change
of the data as the conditions change. In the sections that follow, we explore various ways of
constructing MMs which reproduce the features of the experimental data mentioned in Section 3.

7. Modeling data: logical inference

In the exact sciences, an elementary requirement for the outcomes of an experiment to be
considered meaningful is that they are reproducible. Obviously, in the case of the EPRB experiment,
the (hypothesized) unpredictable nature of the individual events renders the data set Eq. (1) itself
irreproducible. However, repeating the experiment and analyzing the resulting data sets, there is
the possibility that the frequencies Eq. (4) computed from the different sets are reproducible (within
reasonable statistical errors). Or, if it is difficult to repeat the experiment, dividing the data set into
subsets and comparing the frequencies obtained from the different subsets may also lead to the
conclusion that the data is reproducible.

13
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In this paper, we assume that the frequencies Eq. (4) produced by the EPRB experiment are
reproducible. But even if the frequencies Eq. (4) are reproducible, they may still show an erratic
dependence on a or ¢ which can only be captured in tabular form. The latter has very little
descriptive power. Thus, in order for an experiment to yield frequencies that allow for a description
that goes beyond simply tabulating all values, the frequencies not only have to be reproducible but
also have to be robust, meaning that the frequencies should smoothly change if the conditions under
which the data was taken changes a little [23]. This is the key idea of the logical inference approach
for deriving, not postulating, several of the basic equations of quantum physics [23,99-102]. We
briefly recall the main elements of the logical inference approach as it has been applied to the EPRB
experiment [23].

The first step of the logical inference approach is to assign a plausibility [103] 0 < p(x, yla,c) < 1
for observing a data pair (x = £1, y = £1) under the conditions (a, c). As explained in Appendix C,
plausibility and (mathematical) probability are distinct concepts but for the present, practical
purposes, the difference is not important. Recall that frequencies are discrete data whereas the
concept of probability belongs to M2C.

The second step is to use the Cox-Jaynes approach [7,104,105], the notion of robust, reproducible
discrete data and symmetry arguments to derive, not postulate, p(x, y|a, ¢). The most general form
of a function p(x, y|a, ¢) of variables that only take values +1 reads

1+xEi(a, €) +yEx(a, ) +xyEpx(a, €)

2 )
see also Eq. (5d). Specializing to the case E{(a,c) = Ej(a,c¢) = 0 and accounting for rotational
invariance by imposing Eq»(a, ¢) = Ez(a - ¢), we have [23]

14+xyEp(@a-c)  14+xyEpH)
4] = 2 = p(x, y|0), (11)

where 0 < 6 = arccos(a-c) < r is the angle between the unit vectors a and c. Using the assumption
that (x,, yn) and (x.;, ym) are independent if n # m, we can express the plausibility to observe several
pairs in terms of the plausibility Eq. (11) for a single pair [23].

Expressing the notions of reproducible and robust statistical experiments mathematically leads
to the requirements (i) that frequencies should be used to assign values to the plausibilities, thereby
eliminating their subjective character [23] and (ii) that, in the case at hand, the Fisher information

_ 1 (opx.ylo)\* 1 9E12(0)\°
6= 3 p(x,y|9)< 36 ) - 1—5122(9)< 26 ) > 0. (12)

x,y==*1

(10)

p(x,yla, c) =

p(x,yla, c) =

should be independent of 8, positive and minimal [23]. In Appendix D, we solve this optimization
problem. From Eq. (D.3) it is obvious that, discarding the irrelevant solution n = 0, the Fisher
information is minimal if n = 1, yielding

E12(0) = cos(6 + ¢), Ix(0)=1. (13)

where ¢ is a constant of integration.
Requiring perfect anticorrelation (correlation coefficient —1) in the case that a = ¢ (6 = 0), the
phase ¢ must be equal to = and we obtain

E12(0) = —a-¢c = —cosH, (14)

and

1—xya-c
plx.yla, €)= — —. (15)

The correlation Eq. (14) with the minus sign known from the quantum theory of two spin-1/2
objects in the singlet state (see Appendix M), plays a crucial role in Bell’s theorem (see Section 11.1).
Remarkably, the solution Eq. (13) with ¢ = 0, that is E12(8) = +a - ¢, cannot be obtained from the
quantum theory of two spin-1/2 objects [24], see Section 8.2.
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Fig. 4. Analysis of experimental data (data set called scanblue1) recorded in the EPRB experiments performed by Weihs
et al. [88]. (a): the correlation E(« + 6, 8) as a function of the bias applied to Alice’s EOM for a time coincidence window
W = 2ns. In the experiment, the angle 6, which is proportional to the bias, changes every 5 seconds [88]. The number
of coincidences during each 5 s period is at least 7500. The minimum of average times between detection events is
(8t) ~ 24000 ns, an order of ten thousand larger than the time window W = 2ns used to compute the correlations. The
pair of setting («, 8) is chosen randomly out of four possibilities [26,88]. Open squares: («, 8) = (a, c¢); solid squares:
(e, B) = (a, d); open circles: («, B) = (b, c); solid circles: («, 8) = (b, d), where a =0, b =7 /4, c = 7 /8 and d = 37 /8.
These correlations cannot be obtained from Bell's model (see Eq. (35) below). (b): same as (a) except that the time
coincidence window W = 1000 ns, much smaller than (8t) ~ 24000 ns. These correlations are compatible with Bell’s
model (see Eq. (35) below).

It is worth noting that the derivation that led to Egs. (14) and (15) does not make any reference
to concepts of quantum theory. Apparently, the requirement that an EPRB experiment yields
unpredictable individual outcomes but reproducible and robust results for the averages (which are
zero) and perfect anticorrelation if a = ¢ suffices to show that the correlation must be of the form
Eq. (14), with the plausibility to observe a pair (x, y) given by Eq. (15). In short, any “good” EPRB
experiment is expected to yield Eq. (15).

Whether the theoretical description embodied in Eq. (15) survives the confrontation with the
discrete data obtained from experiments can only be established a posteriori. For instance, in
Section 9 we plot Eq. (14) and the data given by Eq. (5¢) and find satisfactory agreement in one
case (Fig. 4a) and significant disagreement in the other (Fig. 4b).

Not surprisingly, the same logical inference reasoning also yields a description of an experiment
with an idealized Stern-Gerlach magnet [23]. To see this, imagine that the particles leaving the
rightmost Stern-Gerlach magnet (see Fig. 2) in the direction labeled y = +1 (or y = —1) pass
through another identical Stern-Gerlach magnet (not shown in Fig. 2 but see Fig. F.11 in Appendix F)
with its uniform magnetic field component in the direction d and outputs labeled by z = +1.

Note that if an ideal Stern-Gerlach magnet is to function as an ideal filter device, we must
require that z = y if d = c. Otherwise, assigning the attribute/label y to a particle is meaningless.
Furthermore, we assume that the average of the z’s does not change if we apply the same rotation
to ¢ and d. Denoting ¢ - d = cosé&, expressing the notions of reproducible and robust statistical
experiments as before and accounting for rotational invariance, it follows that the corresponding
Fisher information

1 9 2
&= D o ( pézslg)) -0 (16)

z==+1

for the plausibility p(z|&) to observe the event z = +1 under the condition £ must be independent
of &, positive and minimal [23]. Solving the optimization problem [23] yields Iz(¢§) = 1 and
1+zcosé& 1+zc-d
Z = =

plzl) = — .
where the + sign reflects the ambiguity in assigning +1 or —1 to one of the directions. In the
following, we remove this ambiguity by opting for the solution with the “+” sign.

(17)

3
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Note that quantum theory postulates Eq. (17) (through the Born rule) whereas the logical
inference approach applied to “good” experiments yield Eq. (17) without making reference to any
concept of quantum theory.

7.1. Polarization instead of magnetic moments

Most EPRB laboratory experiments employ photons instead of massive, electrically neutral
magnetic particles. The Stern-Gerlach magnets in Fig. 2 are then replaced by polarizers with their
plane of incidence perpendicular to the propagation direction of the photons (taken as the z-
direction in the following). The unit vectors ¢ and d, describing the orientations of the axes of the
polarizers can be written as ¢ = (cosc, sinc, 0) and d = (cosd, sind, 0).

Let us first model a thought experiment aimed at demonstrating perfect filtering of the polar-
ization. We imagine placing two identical, ideal polarizers in a row (see also Fig. B.10). Repeating
the steps that led to Eq. (17) and requiring that a polarizer acts as perfect filtering device for all
¢ = d, we find that reproducible and robust statistical experiments are described by the plausibility
(see Appendix D)

n(c—d
1=+ zcos n(c — d) COSZ% , z2=+1
p(zlc —d) = — 5 = . (18)
sin? @ , z=7F1

Comparing Eq. (18) with Malus’ law for the intensity of polarized light (= many photons) passing
through a polarizer, we conclude that the solution with n = 1 is incompatible with experimental
facts and should therefore be discarded. The solution with n = 2 yields Malus’ law. As discussed
below, quantum theory attributes this empirical finding to the fact that photons are spin-one
particles.

Repeating the derivation for the EPRB setup, with polarizers and photons instead of Stern-
Gerlach magnets and magnetic moments, we find

E12(0) = £ cos26 . (19)

where 6§ = ¢ —d = arccos c-d expresses the difference in the axis angles of the polarizers, replacing
the Stern-Gerlach magnets in Fig. 2. Requiring perfect anticorrelation (correlation coefficient —1) in
the case that & = 0, only one of the two solutions in Eq. (19) survives and we have E15(6) = — cos 26.

Egs. (18) and (19) differ from Eqgs. (14) and (17) by the appearance of the extra factor of two in
the argument of the cosine. Within quantum theory, this can be explained as follows. A photon is
thought of as a massless, electrically neutral particle with spin S = 1, with a quantized polarization
that can only take two values +h. In contrast, a neutron for instance is a massive spin S = 1/2
particle, with a quantized magnetic moment that can only take two values £fi/2. The extra factor
of two stems from the difference between S = 1 and S = 1/2 particles.

Logical inference provides a mathematically well-defined framework to model empirical, sta-
tistical data acquired by reproducible and robust, that is “good” experiments. It does not provide
pictures of the individual objects and processes involved in actually producing the discrete data. LI
models belong to M2C.

8. Modeling data: separation of conditions

Instead of postulating the axioms of quantum theory and reproducing textbook material (see
also Appendix M), we use the EPRB experiment to show that its quantum-theoretical description
directly follows from another representation of the frequencies Eq. (4). By doing so, we do not
need to call on Born’s rule, for instance. We proceed directly from discrete data and the logical
inference description of Section 7 to the quantum-theoretical description. In doing so, we avoid
all metaphysical problems resulting from the various interpretations of quantum theory. Thus, we
construct a mapping from the data (the frequencies) to a M2C (quantum theory).
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The basic idea is rather simple. Instead of using the standard expression

(x(cr, &) = D x(k)f(Kler, c2) - (20)

keK

for the average of a function x(k) over the events k € K that appear with a (relative) frequency
f(klcy, c2), depending on conditions represented by the symbols ¢; and c;, we search for functions
X, i|c1) and f(i, j|cp) satisfying [X(j, i|c1)|< 1 and 0 < [f(i, j|c2)|< 1 and for which

(x(cq1, c2)) Z XKkl )f (k, K|c2), (21)

k,k ek

yields the same numerical value as given by Eq. (20), for all (x(c, c2))’s of interest. Note that the
condition ¢; appears in X(k’, k|c;) and not in f(k K'|c2).

Recalling the recurring theme of this paper, the transition from Eq. (20) to Eq. (21) is
a jump over the impenetrable barrier between data (facts) and models thereof. Although
both representations yield the same averages, any interpretation of the symbols XK, k|c1) and
f(k, K'|c;) in terms of discrete data, in terms of “reality”, is problematic. Indeed, there is no
relation between X(k', k|c;) and f(k, k'|c;) and actual discrete data, other than that the sum in
Eq. (21) yields these same numerical value for the average Eq. (20). The symbols x(K', k|ci) and
f (k, K'|c;) do not belong to the realm of these data (facts), they live in the domain of models
only. In Hertz’s terminology, the connection with the original picture is completely lost. Having
lost the connection with “reality”, there is complete freedom regarding the interpretation one
would like to attach to the symbols X(k', k|c;) and f(k, k’|c). In this paper, we adopt a pragmatic
approach. We refrain from giving an interpretation to mathematical symbols except for those
that represent the original discrete data which we aim to describe.

In matrix notation Yy y(c) = ¥(k, k'|c), Eq. (21) reads

(X(c1, ©2)) = Tr X'(¢1)F(ez) = Tr F(e2) X (c1) - (22)

As Eq. (22) indicates, we will be searching for representations that allows us to separate the
conditions ¢; and c, very much like solving differential equations by separating variables [24].
Although the appearance of matrices played a key role in Heisenberg’s matrix mechanics, the latter
and the approach pursued here are only distantly related [24]. A much more elaborate discussion
of how the separation of conditions leads to the framework of quantum theory can be found in
Ref. [24].

The separation of conditions, applied to data produced by experiments performed under several
sets of conditions (cq, ), (¢}, ¢3), ..., is regarded as successful if it yields a decomposition into
models which depend on mutually exclusive, proper subsets cy, ¢, ... and ¢z, c;, ... of the condi-
tions only, thereby reducing the complexity of describing the whole [24]. In the following, to keep
the presentation short, we limit ourselves to a cursory discussion of the separation-of-conditions
approach. A much more detailed treatment can be found in Ref. [24].

We illustrate the basic idea by application to the idealized Stern-Gerlach magnet, assuming that
the frequencies of counting z = 41 particles are given by

1+zc-d
feled)=———. ()= > #flzle.d)=c-d, (23)
z==%1
that is, by the logical inference treatment of the same experiment, see Section 7.

__ The key idea is to exploit the fact that any choice of the (in this case 2 x 2) matrices F( ) and
P(z, d) for which

TrFc)=1, TrP(z, d)Fc)=f(z|c-d), (24)

yields an equivalent description of the data and realizes the desired separation of conditions.
Before embarking on the search for a representation of Eq. (24) in terms of matrices, it is

worthwhile to ask “why not try to find a separation in terms of scalar functions Z(k, ¢) and f(k, d)

such that (x(cq, ¢2)) ZkeK k|c)f kid) ?” In Appendix F, we show that Bell’s theorem, applied to
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the Stern-Gerlach experiment, prohibits a separation in terms of scalar functions. Then, the next
step is to search for a representation in terms of functions of matrices. Conceptually, taking this
step is very similar to introducing complex numbers for solving equations such as x> = —1, or
using Dirac’s gamma matrices to linearize the relativistic wave equation. Indeed, introducing the
matrix structure implicit in Eq. (21) will permit us to carry out the desired separation.

Anticipating for the transition to quantum theory but without loss of generality, we may take
as a basis for the vector space of 2 x 2 matrices, the unit matrix ey = ( (1) (]) and the three
. . 0 1 0 —i +1 0
—_ X __ — Y — —_ z __
Pauli matrices e; = ¢* = 1 0 )&@=0= o0 ) and e3 = 0% = o -1 /) The

four hermitian matrices ep, e, e;, @3 are mutually orthonormal with respect to the inner product
(v|w) = (1/2)Tr vtw. Furthermore, Tr ey = 2, eﬁ =eg,and Tre, =Tr egen =0forn=1,2,3.
In terms of these basis vectors we have, in general

~ foeo + fi(c)er + fr(c)ey + fa(c)es

F(c) = 5 )
Plz.d) = po(z, d)ey + pi1(z, d)e; + pa(z, d)ey + ps(z, d)e37 (25)

2

where the f’s and p’s can be complex-valued and the factor 2 was introduced to compensate for
the fact that Tr ey = 2. The constraints expressed by Eq. (24) imply that

1+zc d
fo=1, polz,d)+ an Pa(z, d) = : (26)

Obviously, Eq. (26) is trivially satisfied by the choice f;(c) = ¢, for n = 1,2, 3 and po(z,d) = 1,
Dn(z,d) = zd, forn = 1, 2, 3. It is easy to verify that this choice yields eigenvalues of F(c) and P(z, d)
in the range [0, 1] (recall that ¢ and d are unit vectors). From the arguments given above, it is not
clear that the choice of f’s and p’s is unique, but this does not matter for the present discussion (see
Ref. [24] for more information). Our goal was to find at least one representation which describes
the data and for which the conditions ¢ and d are separated.

By construction, the matrix F(c) has all the properties of the density matrix p(c) (see [24]). In
quantum-theory notation and with f,(c) = ¢, and p,(z, d) = zd,,, we have

- 14+co = 1+4zd- SO
F(c):p(c):#, P(z,d):# — Y Pz dfo=c-d. (27)
z=+1

We emphasize that the quantum-theoretical description Eq. (27) has been constructed, not postu-
lated as in quantum theory textbooks, by searching for another representation of the same discrete
data.

As mentioned before, Stern-Gerlach magnets act as filtering devices. This follows from P( d) =
Az(z, d), showing that P( d) is a projection operator. However, although P( d) appears in the
course of constructing a description of the data, we should not think of P( d) as an object that
affects particles but only as a description of how the frequency distribution of the particles changes
when the particles pass through a Stern-Gerlach magnet.

The frequencies Eq. (5d) describing the outcomes of the EPRB experiment depend on two,
two-valued variables and two conditions a and c. Therefore, instead of 2 x 2 matrices, we now
have to use 4 x 4 matrices. Repeating the steps that led to Eq. (27) and making use of the
separated description of the ideal Stern-Gerlach magnet Eq. (27), we can construct, not postulate,
the quantum-theoretical description of the EPRB experiment [102,106]. Specializing to the case
Ei(a, c) = Ex(a,¢) = 0 and Ejz(a, ¢) = —a - ¢ (see Eq. (14)) we obtain

p_ 1o :(IN)—NT))((NI—(HI) (28)
4 V2 V2 ’

that is, the quantum-theoretical description of the singlet state of two spin-1/2 objects.
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Furthermore, for any p (such as Eq. (28)) which does not explicitly depend on a or ¢ we have

Ef@¢)=(01-a) =Trpos-a= (o) -a, (292)

Exa, €)= (02-¢) =Tr poy-c = (03) - €, (29b)

Elz(a, c)=(01-a0,-¢)=Trpo;-a0,-c= Zaal“a,ﬂcﬁ, (29¢)
a.p

where the 3 x 3 matrix I, g = (09 02) Equation Eq. (29) epitomizes the power of the quantum-
theoretical description. It separates the description of the state of the two-spin system in terms of
the expectation values (o), (03), and I, g = (09 0'2) from the description of the conditions (or
context) a and ¢ under which the data was collected

Noteworthy is also that in general, the single-spin averages Eqs. (29a) and (29b) do not depend
on ¢ and a, respectively. In this sense, quantum theory exhibits a kind of “locality”, “separation”, or
perhaps better “independence”, in that averages pertaining to particle 1 (2) only depend on a (c).
Of course, the correlation Eq. (29¢) involves both a and c.

In short, separating conditions led to the construction of the quantum-theoretical description of
the EPRB experiment containing the following elements [6]

o The two-particle system emitted by the source has total spin zero and after leaving the source,
the particles do not interact.

e The statistics of the magnetizations, obtained by observing many pairs, is described by the
singlet state |v) = (|14) — 4 1)) /\/5, or equivalently, by the density matrix Eq. (28).

o The single-particle averages (61) = (02) = 0 and the correlation I, g = —d4,p, implying
El(a c)=(o1-a) =0, Ez(a c)= (o, -¢) =0, and Eu(a c)=(01-a0y-C)=-a-cC

8.1. Advantages and limitations of using quantum theory

The main advantage of using quantum theory as a model for the data is in the amount of
compression that can be achieved. This can be seen as follows.

For a fixed pair of settings (a, c), the frequencies f(x, y|a, ¢) or the density matrix p, together
with the projectors M(x|a) = (14 xa - ¢4)/2 and M(y|c) = (1 + yc - 02)/2, describe the statistics of
D equally well.

If we repeat the EPRB experiment with M different pairs of settings and characterize the results
by frequencies, we need 3M numbers to represent the statistics (not 4M because f(—1, —1|a, ¢) =
1—f(1,1]a,¢c) — f(1, —1]a, ¢) — f(—1, 1]a, ©)).

On the other hand, quantum theory describes the statistics of all EPRB experiments for all
possible settings through the fifteen real numbers that completely determine the density matrix
p. To see this, we write the density matrix as a linear combination of a basis of the Hilbert space
of 4 x 4 matrices. One way to construct these basis vectors is to form the direct product of each
matrix from the set {1, 0%, oy, 07} with each of the matrices from the set {1, 0%, 03, 0}. There are
sixteen such 4 x 4 matrices with their corresponding coefficients. Because Tr p = 1 there are
only fifteen independent coefficients, which are real-valued because p is a hermitian, non-negative
definite matrix [6] and all elements of the basis are hermitian matrices too.

It is easy to show that these coefficients are com};)letely determined by the six single spin
averages (o7), (o), and nine two-spin averages (o0, ), with , 8 = X, y, z. Thus, in theory, we
need to perform only fifteen experiments to clgtermme these expectation values and can then use
these numbers to compute E{(a, ¢) = (0 -a), E2(a, €) = (02 - €), and Ex(a, ¢) = (01 -a 0> - c) for any
pair of settings (a, c), see also Eq. (29).

In conclusion, compared to the representation in terms of frequencies which requires 3M
numbers to describe the statistics of M EPRB experiments, the quantum-theoretical description
requires only fifteen numbers to describe all possible EPRB experiments, a tremendous compression
of the data if M is large.

Regarding limitations of the quantum formalism, the no-go theorem presented in Section 8.2
gives a first indication that there exist data which can be modeled probabilistically but does not fit
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into the quantum formalism. It is also not difficult to see that, as a direct consequence of the linear
structure of the density matrix p = (1+a-0)/2 and the projector M(x|c) = (1+xc-01)/2, quantum
theory can never yield a frequency f(x|a, ¢) = (1 + x(a - €)?)/2, for instance. These limitations are,
of course, outweighed by the power of quantum theory to compress the statistics of the data in a
way that probabilistic models cannot.

Finally, it is important to recall that the quantum formalism also applies to cases where the
experimental data does not come in the form of single items of discrete data, i.e., individual events.
For instance, if an experiment measures the specific heat of some material, there are no “individual
events” to compute the statistics of, only a record of numbers for the specific heat as a function of
e.g., the temperature. Still, a quantum-theoretical model calculation of the specific heat is based on
Eq. (22), with suitable matrices F(c1) and X(c;), of course.

8.2. Quantum theory: a no-go theorem for a system of two spin-1/2 objects

Replacing the requirement of perfect anticorrelation by complete correlation, the solution of the
logical inference problem reads Eq;(a, ¢) = +a - ¢. To prove that such a correlation is incompatible
with quantum-theoretical description of two spin-1/2 objects [97], we consider the more general
case for which

Ei(a,c)=Ey(a,¢)=0, Ep(a,c)=—qa-c (30)

where q is a real number. Starting from the most general expression of the density matrix, Eq. (30)
implies that [97]
1—qoq-0;
p= 2 . (31)
However, as the eigenvalues of o1 -0, are —3, +1, +1, +1, the matrix Eq. (31) is only non-negative
definite if ¢ > —1/3. In other words, Eq. (31) is not a valid density matrix if ¢ < —1/3. This then
allows us to state the following no-go theorem:

There does not exist a quantum model for a system of two spin-1/2 objects that yields
p(x,yla,c) = (1 —gxya-c)/4 or, equivalently, the averages E¢(a, ¢) = E(a,¢) = 0 and
correlation Eqp(a,c) = —qa-cunless —1/3 <qg < 1.

An immediate consequence is that there does not exist a quantum-theoretical description of a
system of two spin-1/2 objects if

Ei(a,c)=Eya,¢)=0, Ep(a,c)=+a-c. (32)

This “no-go theorem” may be viewed as a kind of “Bell theorem”, although it is not a theorem about
the limited applicability of the separable model introduced by Bell (see Section 11.1) but rather a
theorem about the limited applicability of quantum theory. In contrast, a probabilistic model can
yield Eq. (32). Indeed, P(x, y|a,c) = (1 +xya - c)/4 does exactly that.

8.3. Discussion

Recapitulating, starting from sets of two-valued data, we have constructed instead of postulated
the quantum-theoretical description of the ideal Stern-Gerlach and EPRB experiments by

(i) Assuming that the data sets were obtained by reproducible and robust, that is by “good”,
experiments.

(ii) Requiring that the description of the data in terms of the relative frequencies can be separated
in a part that describes the preparation of particles with particular properties and other parts
that describe the process of measuring these properties.
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At no point use was made of concepts that are quantum-theoretical in nature. The data being the
immutable facts and quantum theory being a very convenient, minimalistic M2C describing the
data, there is no need to bring in Born’s rule to “explain” how quantum theory “produces” data. By
itself, a quantum-theoretical model simply cannot “produce” data and, as a description, also does
not need to.

Moreover, as the data is discrete, represented by two-valued variables, there is no need to
postulate the quantization of the spin. The transition from the statistical description in terms of
frequencies of events to a representation in terms of 2 x 2 matrices made it possible to decompose
the description of the whole in simpler descriptions of the parts. It is this decomposition that
renders quantum theory a powerful mathematical apparatus to describe discrete data.

Starting from the model-free description of any four sets of data pairs presented in Sections 5-8
have shown how a combination of plausible reasoning and the basic requirement that a description
of the whole can be decomposed in simpler, separated parts leads to the construction of a MM, that
is quantum theory, which can capture the main features of these data.

In the two sections that follow, we scrutinize laboratory experiments which have been designed
to produce averages and correlations of data that, inspired by the quantum-theoretical description
of the EPRB thought experiment (see Appendix M), are expected to exhibit the features of the
“imagined” data, listed in Section 3.

9. Data analysis of an EPRB laboratory experiment with polarized photons

Most EPRB laboratory experiments focus on demonstrating that the measured correlation cannot
be described by Bell's model, see Eq. (35), by showing that the Bell-CHSH inequality (see Ap-
pendix E.1) is violated. Perhaps more interesting and ultimately more relevant is that the analysis of
the data of several EPRB experiments points to a conflict with the quantum-theoretical description
of the EPRB experiment [27-31].

As the data analysis of very different experimental setups [26,40-42,88-90] all point to similar
conflicts [27-31], we only show and analyze the data acquired in one of the more complete and
sophisticated EPRB experiments, the one performed by Weihs et al. [26,88], see Fig. 3. The protocol
that we use to analyze these data is identical to the one employed by the experimenters [26,88],
see Refs. [28,29,107] for more details.

In Figs. 4 and 5, we present some results of our analysis of the experimental data [26]. A first
observation is that the correlations E(e + 6, 8) shown in Fig. 4(a) are in excellent agreement with
the correlation E1,(a, ¢) = — cos 2(a — c¢) of a system of two photon-polarizations, described by the
singlet state. The correlations shown in Fig. 4(a) have been obtained by analyzing the raw data with
a time-coincidence window W = 2 ns, four orders of magnitude smaller than (§t) ~ 24000 ns,
the average time between the registration of a pair of detection events. The correlations shown in
Fig. 4(a) cannot, not even approximately, be reproduced by Bell’s model, see Eq. (35) below.

Fig. 4(b) demonstrates that by enlarging the time-coincidence window to W = 1000ns <«
(8t), the maximum amplitude of the correlations E(a + 6, 8) drops from approximately one to
about one half. Note that a time-coincidence window of W = 1000ns is a factor of twenty-four
smaller than (§t) &~ 24000ns, that is the frequency of identifying “wrong” pairs is small. The
minor modification that lets Bell's toy model comply with Malus’ law (see Appendix L.2) yields
C(a,c) = —(1/2)cos 2(a — c), rather close to E(a + 6, ) shown in Fig. 4(b).

The analysis of the experimental data clearly demonstrates that the maximum amplitude of the
correlations E(« + 6, 8) decreases as the time-coincidence window W <« (8t) increases. Within
the range 2ns < W <« (8t), W can be used to “tune” the correlations E(a + 6, 8) such that
they are compatible with (i) Bell’s modified toy model (see Appendix L.2) or two spin-1/2 objects
described by a separable state (see Appendix M.4) or with (ii) two spin-1/2 objects described by a
non-separable pure state, e.g., a singlet state (see Appendix M).

Whether the polarization state is “entangled” depends on the choice of the coincidence
window W. Therefore, in this case, entanglement is not an intrinsic property of the pairs of
photons. It is a property of the whole experimental setup.

The obvious conclusion that one has to draw from the observation that the numerical values of
the correlations depend on the value of the time-coincidence window W is that any CM or MM that
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Fig. 5. Analysis of experimental data (data set called newlongtime2) recorded in the EPRB experiments performed by
Weihs et al. [88]. (a): the Bell-CHSH function |S| = |E(a, ¢) — E(a, d) + E(b, ¢) + E(b, d)| as a function of the time window
W fora=0,b=mnm/4 c =n/8 and d = 37/8. The dashed line at |S| = 2 is the maximum value for Bell’s model
Eq. (35), or a quantum system of two S = 1/2 objects in a separable (product) state. The dashed line at |S| = 2+/2 is the
maximum value for a quantum system of two S = 1/2 objects in a singlet state. The total number of photons detected on
the left and right side during the experiment which lasted 60 s is 1733902 and 1621229, respectively. The total number
for coincidences with an absolute value of the time-tag difference less than W = 2ns is about 35000. The minimum of
average times between detection events is (§t) = 35000 ns, more than 30 times the maximum value W = 1000 of the
time coincidence window used to plot |S|. (b): selected single-particle averages as a function of the time coincidence
window W, contradicting the quantum-theoretical description on a very elementary level. Error bars correspond to 2.5
standard deviations.

aims to describe this particular EPRB experiment should account for the time-coincidence window
(or another mechanism) that is required to identify pairs of events. Phrased differently, the time-
coincidence window is essential to the way the data is processed and to the conclusions that are
drawn from the data. Therefore it has to be a part of the model description. Note that quantum
theory may be able to describe the experimental data for one particular W but lacks the capability
to also describe the W-dependence, simply because in orthodox quantum theory, time is not an
observable.

The importance of including the time-coincidence window W in a model for this particular
laboratory EPRB experiment is further illustrated in Fig. 5(a). Fig. 5(a) demonstrates that the
experimental data might be represented by Eq. (35) if the time coincidence window W is chosen
properly, that is if the Bell-CHSH function |S| < 2.

For W < 100ns, the value of |S| > 2 and the correlations are compatible with a quantum-
theoretical description in terms of a non-separable density matrix, but not with Bell’s model Eq. (35)
because the latter implies that |S| < 2. From model-free inequality Eq. (6), it follows that if |S| > 2,
the fraction of quadruples A that one might be able to identify in the data that led to Fig. 5(a) must
be smaller than 2 — |S|/2.

For 200ns < W < 1000 ns, much less than the average time interval (5t) = 35 000 ns between
two detection events, the value of |S| < 2 admits a description in terms of a separable density
matrix or, possibly, by Bell's model Eq. (35).

Clearly, the time-coincidence window W can be “adjusted” in a wide range, such that either
IS| < 2 or |S|] > 2. In other words, the “evidence” for a singlet state description appears or
disappears depending on very reasonable choices of W (that is W « (§t) = 35000ns). These
results corroborate our conclusions drawn on the basis of the data depicted in Fig. 4.

According to quantum theory, see Eq. (29), Ei(a,¢) = (o7 - a) and Ex(a,c) = (o3 - ¢) should
not depend on ¢ and a, respectively. For small W, the total number of coincidences is too small
to yield statistically meaningful results. For W > 20ns the change in some of these single-spin
averages observed on the left (right) when the settings of the right (left) are changed (randomly)
systematically exceeds five standard deviations [28,29]. Indeed, E(a, c¢) and Ey(a, d) (squares in
Fig. 5(b)) should, according to the quantum theory of a system in the singlet state, be independent
of c and d but in fact, they differ by at least five standard deviations. The same holds true for E,(a, c)
and E;(b, c) (circles in Fig. 5(b)).
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In conclusion, although most EPRB experiments that have been performed so far have produced
data that violate the Bell-CHSH inequalities, these experiments do not produce data that agree with
the quantum-theoretical description of the EPRB experiment [27-31].

To head off possible confusion, it is not quantum theory which fails to describe the data. Indeed,
given experimental data for the averages u, = (01 -€y), vy = (02-€4), Wy g = (01 - €, 0 - €g) With
e, =(1,0,0), e, =(0,1,0), e, = (0,0, 1), the density matrix

1
pP=7 1+ Z (uaaf‘—i—vaa;‘)—i— Z af‘wa,lgazﬂ , (33)

a=x,y,z a,B=xy,z

always yields a perfect fit to this data if we allow the expansion coefficients u,, vy, and wy g to
depend on a and c. The conflicts between quantum theory of the EPRB experiment and experimental
data can only be resolved by new, much more accurate experiments.

In Section 11.5, we review a probabilistic model which complies with the separation principle
and describes the raw, unprocessed data of the EPRB experiment. In the limit of a vanishing time-
coincidence window, this M2C yields the quantum-theoretical results for the EPRB experiment
[107,108]. The latter implies that there is no fundamental problem to have a MM produce (e.g., with
the help of a pseudo-random number generator) data of the kind gathered in an EPRB experiment
and recover the quantum-theoretical results. Indeed, that is exactly what the subquantum model
described in Section 11.6 shows.

10. Quantum computing experiments

Instead of performing EPRB experiments with photons, one can also carry out their own EPRB
experiments with publicly accessible quantum computer (QC) hardware [109]. In the case of
photons, disregarding technicalities, it is not difficult to realize situations in which there is no
interaction between the photons of a pair at the time of their detection because photons need a
material medium to “interact”. In contrast, in superconducting or ion trap quantum devices, the
qubits are very close to each other [110]. The qubits of a physical QC device are part of a complicated
many-body system, the behavior of which cannot be described in terms of noninteracting entities.
Therefore, experiments with QC hardware are of little relevance to the EPR argument [15] as
such. However, they can be used to test to what extent a QC [110] can generate data sets D that
comply with the quantum-theoretical description in terms of the singlet state, that is Ei(a, ¢) = 0,
E;(a,c) = 0, and Ez(a,c) = —a - c. In contrast to EPRB experiments with photons for which it
is essential to have an external procedure (such as counting time coincidences or using voltage
thresholds) to identify photons, QC experiments can generate bitstrings for all qubits simultaneously
and identification is not an issue.

In short, a QC is a physical device that is subject to a sequence of electromagnetic pulses and
changes its state accordingly. The often complicated physical processes induced by these pulses are
assumed to implement a sequence of unitary operations that change the wavefunction describing
the state of the ideal QC [110]. The sequences of unitary operations, constituting the algorithm, are
conveniently represented by quantum circuits [110]. Actually executing a quantum circuit such as
Fig. 6 on QC hardware requires an intermediate step to translate the circuit into pulses. This step
is taken care of by the software of the QC hardware provider [109].

The quantum circuit shown in Fig. 6 changes the initial state |¢) = |00) = |11), corresponding
to both spins up, to the singlet state |®) = (|01) — |10))/ﬁ =(1l) - |¢T))/\f2 and performs
measurements on qubits i and j, corresponding to rotation angles o and g about the vector
(1,1, O)/ﬁ, respectively.

The analytical calculation of the result of executing the quantum circuit shown in Fig. 6 on the
MM of an ideal QC yields for the single- and two-qubit expectation values Ei(«, 8) = E(a, 8) =0
and E;(a, B) = — cos(a — B), respectively, as it should be for a quantum-theoretical description of
the EPRB experiment.

The software controlling the operation of an IBM-QE device transpiles the circuit Fig. 6 into
the mathematically equivalent circuit shown in Fig. 7 in which only so-called “native” gates
appear [111]. It is the latter circuit that is executed on the QC hardware.
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o) —[X{A) b
0); X} 2

Fig. 6. Circuit to generate the singlet state |®) = (|01) — |10)) /+/2 and perform measurements of the state of the qubits
(i,j), projected on directions specified by the angles o and B, respectively. The symbol connecting the two qubit lines
denotes the controlled-NOT (CNOT) operation. For the meaning of the other symbols, see [110].

[0); Rz(7/2) Rz(r/2) F——]{ Ra(r/2) Ra(r/2) FH Rz(0) FH Ra(7/2) Rz(r/2) b
0); —{x] [Re(n/2) Ra(w/2) | R=(8) | -{Rz(n/2) Rz(r/2) b

Fig. 7. Transpiled version of Fig. 6 in terms of the native gates “X”, “Controlled X”, “Rz”, and “Sx”, used by the IBM-QE
Manila device [111].

0.5

Averages and correlation
o

Averages and correlation
o

Averages and correlation
o

w - 'y
-1 -1 -1

0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360 0 45 90 135 180 225 270 315 360
c-a (degrees) c-a (degrees) c-a (degrees)

Fig. 8. Comparison between experimental data produced by the IBM-QE Manila QC device in September 2022 and
the quantum-theoretical description in terms of two spin-1/2 objects in the singlet state. For fixed angles of rotation a
and c, the circuit shown in Fig. 7 is executed on the IBM-QE Manila QC device ten thousand times. For each pair of
angles («a, 8) = (a, c), the ten thousand pairs of bits that have been generated determine the ten thousand values of
(A1.n, B1,n) which are then used to compute the single spin averages and correlation according to Eq. (5). In this set of
experiments, a =0 and c =0, 7.5, ..., 360 degrees. Solid line: correlation Ej;(a, ¢) = — cos(a —c) of two spin-1/2 objects
in the singlet state; open triangles: experimental results for the single-spin averages E%U (A) and Egz) (v); solid squares:
experimental results for the correlation Esm. (a): data obtained by using qubits (i, j) = (1, 2) of the Manila device yields
max |f12(a, )| ~ 0.83; (b): using qubits (i, j) = (2, 3) yields max \Ez(a, c)| ~ 0.90 with no visible asymmetry; (c): using
qubits (i, j) = (3, 4) yields max |Ejz(a, €)| &~ 0.90 and a curve which is slightly shifted or asymmetric around ¢ —a = 180
degrees.

In practice, a QC EPRB experiment consists of repeating the following three steps

1. Reset the device to the state with both qubits set to zero.

2. Apply the pulse sequences as specified by the circuit in Fig. 7.

3. Read out the state, yielding a pair of bits (b;, b;) taking one out of the four possibilities (0, 0),
(1,0), (0, 1), 0r (1, 1).

The number of repetitions N is typically in the range 1000 - 10000. Each readout yields a pair
(x=1—2b; = %1,y = 1 — 2b;) which is added to the data set D;. From the N pairs of data items
in Dq, we compute the averages and the correlation according to Eq. (5).

Fig. 8 shows the results of performing EPRB experiments on the IBM-QE Manila device, using
three different pairs (i, j) = (1, 2), (2, 3), (3, 4) of the 5-qubit device. The best results are obtained
if we use qubits (2, 3), in which case the correlation Egu) agrees with the quantum-theoretical result
within 10%, a considerable improvement from the 20% accuracy obtained with the IBM-QE devices
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Table 1

Raw data produced by the IBM-QE Manila QC device in September 2022 using qubits (i, j) = (2, 3), obtained by randomly
switching between circuits that use pairs of qubits which share one common qubit (see Fig. K.12 in Appendix K), yielding
E(a,c) = 5512)' E(a,d) = Eém, E(b,c) = Egm, and E(b, d) = Eflm. In total, N = 10000 repetitions were used to compute
the Bell-CHSH function |S| = |E(a, ¢) — E(a, d) + E(b, ¢) + E(b, d)| = [E{"® — E™® + E™) + E{P)).

s a b Ng noo no1 nio ny 02 EY E)
1 0 45 2545 271 1018 1038 218 —0.61572 0.02868 0.01297
2 0 135 2447 1058 234 209 946 0.63792 0.03555 0.05599
3 45 90 2536 264 994 1072 206 —0.62934 0.05363 —0.00789
4 90 135 2472 324 954 978 216 —0.56311 0.05340 0.03398
N = 10000 IS| = 2.4609
Table 2

The raw data for the expansion coefficients of the density matrix Eq. (33) describing two qubits/two spin-1/2 objects.
The data shows that the density matrix describing the data is, to a good approximation, given by p = (1 —0.901 - 03)/4.
This data was produced by the IBM-QE Manila QC device in September 2022 using qubits (i, j) = (2, 3).

« =X B=y B=z

Uy vg Wy, B Uy vg Wy, B Uy vg Wa.B
X —0.0384 0.0936 —0.9052 0.0392 0.0710 —0.0790 0.0296 0.0658 0.0054
y —0.0202 0.0050 0.0192 0.0256 0.0252 —0.8932 —0.0048 0.0420 0.0148
z —0.0280 0.0314 0.0142 —0.0022 0.0286 —0.0384 0.0238 0.0242 —0.9072

available in 2016 [112]. The averages Egl) and E§2) are close to zero, as they should be for two
spin-1/2 objects in the singlet state.

Next, we perform QC experiments (employing qubits (i, j) = (2, 3)) to compute the Bell-CHSH
function |S| = |E(a, ¢) — E(a, d) + E(b, c) + E(b, d)|. As in the EPRB experiment with photons (see
Section 9), between every repetition, a random number generator is used to choose between circuits
with («, 8) in Figs. 6 and 7 corresponding to the choices (a,c) = (0, 45), (a,d) = (0, 135),
(b, c) = (90, 45) and (b, d) = (90, 135). The experimental results are shown in Table 1.

Alternatively, assuming rotational invariance, we can use the data in Fig. 8 to calculate the
value of the Bell-CHSH function |S| = |E(a—c,0)—E(a—d,0)+E(b—c,0)+EMb—d,0) =
|3E(0, 45) — E(0, 135)| and find |S| = 2.3496, |S| = 2.5872, and |S| = 2.6529 for the runs employing
qubits (i,j) = (1, 2) (Fig. 8(a)), (i,j) = (2, 3) (Fig. 8(b)), and (i, j) = (3, 4) (Fig. 8(c)), respectively.
Apparently, using the data yielding the “best” curve (Fig. 8(b)) does not necessarily result in the
largest violation of the Bell-CHSH inequality.

As shown in Table 1, randomly selecting between one of the four pairs of angles in-between each
measurement reduces the value from |S| = 2.5872 to |S| = 2.4609. A similar reduction is obtained
if for each sequence we alternate between the circuit for fixed («, 8) and a circuit that performs X
operations on each qubit and discard the bitstrings obtained with the latter. This reduction may be
interpreted as some loss of coherence due to the switching between different circuits in-between
each measurement but may equally well be within the statistical errors (which we could not test
because of limitations on the use of the IBM-QE device).

We have also obtained estimates for (o7), (¢%), and (0705) for o, B = x,y, z by running nine
different experiments on the IBM-QE Manila QC device. From the results presented in Table 2,
we may conclude that executing the circuit that, in theory, yields a singlet state and performing
measurements on the two qubits, produces data that can be described by the density matrix
p = (1 —0.907 - 63)/4, which is close to the density matrix Eq. (28) of the singlet state and in
concert with the results depicted in Fig. 8(b).

Finally, by removing the “Controlled X” from Figs. 6 and 7, the resulting circuit computes
the single- and two-qubit averages for a two-particle system in a pure product state. The data
(not shown) are in good agreement with the results of the corresponding quantum-theoretical
description.

In summary, the IBM-QE Manila device produces data which is in good agreement with the
quantum-theoretical description in terms of the singlet state and product state (after removing
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the controlled X from the circuit). As mentioned earlier, these experiments have no bearing on
the issue of separability of the two qubits/spin-1/2 objects, but they do show that a many-body
system can produce, in an event-by-event-like manner, data that is in good agreement with the
quantum-theoretical description of the EPRB experiment.

11. Non-quantum models

We take as the operational definition of a non-quantum model (NQM) any MM for which:

1. All variables of the model, including those which have not been or cannot be measured,
always have definite, not necessarily discrete, values.

2. All variables change in time according to a process complying with Einstein’s notion of local
causality.

Note that this operational definition applies to MMs only and does not relate to realism, the belief
that there exists an external reality independent of anyone’s thought, knowledge or observation.

Part 1 of the operational definition rules out all probabilistic and quantum-theoretical models,
which are M2C. The reason for this has already been discussed in Section 1. We repeat it here in
slightly different words. By construction, neither probability theory nor quantum theory contain a
specification of a procedure that assigns values to the random variables that connect these theories
to the individual events that are at the core of, but external to, these MMs. Thus, M2Cs do not
comply with the first requirement listed above but the combination of a M2C and pseudo-random
number generators providing definite values to these random variables does. Of course, the latter
is a CM, no longer a M2C. In this section, in formulating a MM, it is implicitly assumed that, when
necessary, the MM is turned into a model that generates discrete data (a CM) by including, into
the description, an appropriate algorithm (e.g., a pseudo-random number generator) that generates
these data.

Part 2 of the operational definition, the “locality principle”, asserts that all physical effects are
propagated with finite, subluminal velocities, so that no effects can be communicated between
systems separated by space-like intervals [91]. This principle is related to but not the same as the
“separability principle”. The latter asserts that any two spatially separated systems possess their
own separate real states [91], or in Bell's words, that “mutually distant systems are independent of
one another” [92]. The approach of separating conditions [24], exemplified in Section 8 extends the
“separability principle” in that there is no reference to “spatially separated” or “mutually distant”.

A key question in the foundations of quantum physics is whether there exist NQMs that yield the
statistical results of the quantum-theoretical description of the EPRB experiment. The answer to this
question is “yes” [2,97,107,108,113]. In the subsections that follow, we review an LHVM that fails
at producing the (imagined) data of the EPRB experiment (Section 11.1) and a M2C (Section 11.5)
and a CM (Section 11.6) that both succeed.

11.1. Bell’s models and theorem

The quantum-theoretical description of the EPRB experiment in terms of two spin-1/2 objects
described by the singlet state yields for the correlation E;; = —a - ¢ (see Section 8 or Appendix M
for more details). Bell demonstrated that there is a conflict between the quantum-theoretical model
of the EPRB experiment and a class of local realist models [43,93,96].

First, Bell considered a model for the correlation C(a, c) of the form [43]

C@a,c) = —/A(a,A)A(c, AR dr, A@, ) ==£1, 0 < u(n), /M(x)dx =1, (34)

where the function A(a, ) is assumed to model the process that generates the discrete data in the
EPRB experiment.

Bell gave a proof that C(a, ¢) cannot arbitrarily closely approximate the correlation —a - ¢ for all
unit vectors a and ¢ [43]. According to Bell himself (see Ref. [93](p.65)), this is the theorem. From
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Eq. (34) and A(a, A) = %1 it follows immediately that C(a, ¢) = —1 for all a = ¢, a characteristic
feature of the correlation of two spin-1/2 objects described by a singlet state.

Subsequently, Bell showed that his theorem also holds for a more general expression of the
correlation Eq. (34), namely [93,96]

C(a, )= fA(a,A)B(c,A)u(A)dA, |A(a, )l < 1, [B(c,A) <1, 0 < u(d), fu(k)dx =1,
(35)

where the functions A(a, A) and B(c, A) are assumed to model the process that generates the discrete
data in the EPRB experiment.

Bell’s theorem only applies to MMs of the type Eqgs. (35) and, as we show later by concrete
examples, certainly not to all MMs for the EPRB experiments. In fact, Bell’s theorem does not apply
to MMs for the raw, discrete data generated by EPRB laboratory experiments, see Section 9. For
convenience of the reader, the standard proof of Bell's theorem is given in Appendix E. Alternative
proofs for specific choices of the functions A(a, A) and B(c, A) that are not based on Bell-type
inequalities are given in Appendix G and Appendix H.

MMs defined by Eq. (35) are commonly referred to as local hidden variable models (LHVMs). The
specification of the dependence of A(a, ) on a and A and of B(c, ) on ¢ and A is an integral part
of any LHVM. The symbol X stands for all “hidden variables”, taking values in a domain denoted
by A. The term “local” refers to the fact that for each value of A, the value of A(a, 1) (B(c, A)) does
not depend on the value of ¢ (a) (see Ref. [93], p.15,36). This requirement of independence, made
explicit by writing A(a, A) and B(c, A), guarantees that the model satisfies Einstein’s criterion of local
causality. Actually, this requirement ensures much more, namely that the choice of ¢ (a) can never
have an effect on the value of A(a, 1) (B(c, 1)), not in the future nor in the past. In this sense, the
term “local” is somewhat unfortunate and misleading but in the spirit of “the child (Eq. (35)) should
have a name”, the “L” in LHVM is fine as long as we keep in mind that “local” does not refer to
Einstein’s notion of local causality.

In Eq. (35), the symbol A stands for one or more variables. The integrals over A in Eq. (35) may
be defined in terms of sums running over a partition of the domain A in P elements V; and letting
P — oo. In particular we have

C(a, c) ZA B(c, M)k (Vh), (36)

where A; denotes an arbitrary point in the partition element V;, and «(V;) > 0 is a measure of the
“volume” of V; satisfying Y1, x(V;) = 1.

With an eye on the divide between discrete data and MMs describing these data, consider the
case where A(a, A) = %1 and B(c, A) = +1. Once the dependence of A(a, A) and B(c, 1) and the
partition of the domain A in P parts have been fixed, we can use a digital computer to generate
the £1's. Therefore, in its discretized form Egs. (36) and when implemented as a CM, Bell's MM
actually produces discrete data. There is no barrier of the kind mentioned in Section 1.

11.2. Extension of Bell’s theorem to stochastic models

Bell’s theorem can be generalized to stochastic models. With A(a, A) = >_,__ xP(x|a, 1) where
0 < P(x|a,A) < 1 denotes the probability for x = =1 conditional on a and A and similarly
B(c,x) = —>_,_.,YP(ylc, 1), Eq. (35) becomes

C(a, c) Z /xyP xla, M)P(ylc, A) () dxr, 0 < u(hr), /u(l)d)» =1, (37)

x,y==+1

and Bell's theorem now says that there do not exist probabilities P(x|a, A) and P(y|c, 1) such that
Cla,c)=-a-c
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Once we move into the realm of probabilistic models, there are some new aspects that are not
present in a model that is formulated in terms of variables that take values 41 only. One can argue
that the values of the variables x and y appearing in Eq. (37) are random and therefore not known
at all times. Then, according to our definition, Eq. (37) does not qualify as an NQM but Eq. (37)
still qualifies as a local, factorable stochastic model [47]. The latter is “local” in the sense that
mathematical entities, P(x|a, A) and P(y|c, A) do not depend on ¢ and a, respectively. However, as
probabilities express logical relations, not always physical or causal relations [51], the fact that a
and ¢ appear separated in Eq. (37) has no bearing on Einstein’s criterion of local causality being
satisfied or not.

11.3. Proper probabilistic models

Any correct probabilistic description of the data collected in an EPRB experiment has to start from
the probability P(x, y|a, c) for the joined event (x, y), conditional on a and c. Let us try to express
P(x, y|a, c) in terms of P(x|a, ») and P(y|c, A). According to the rules of probability theory [4,7], we
may write

P(x,yla,c) = /P(x,y|a, c, M) u(r) da = /P(x|y, a,c, A)P(yla, ¢, A) u(A) dxr

” f P(xla, MP(yle, 2) u(2) dA. (38)

where 0 < p(A) and [ w(r)dr = 1.
To proceed, we have to make some assumptions, namely that it is allowed (or a good approxi-
mation) to

e replace P(yla, ¢, ) by P(y|c, ),
e replace P(x|y, a, c, A) by P(x|a, 1).

Probabilities express logical relations, not always physical or causal relations, a fact that is easily
proven by considering an experiment involving a red and a blue ball (see e.g. Ref. [51]): It is
perfectly fine to compute P(“first ball red” | “second ball blue”) and P(“first ball red”), which are
in general not equal, even though, obviously, the second ball drawn cannot physically influence
the first ball drawn. Therefore, we cannot call upon the requirement of Einstein’s notion of local
causality to justify replacing P(y|a, ¢, A) by P(y|c, 1), see for instance [51]. As a matter of fact, within
a probabilistic setting, given that one has to start from Eq. (38), it is simply impossible to justify
an expression such as Eq. (37) on mathematical grounds. Of course, Eq. (37) may be useful as an
“out-of-the-blue”, uncontrolled approximation. The arguments against the justification of Eq. (37)
pertain to the probabilistic setting only. They cannot be used against the justification of Eq. (35) as
an NQM of the correlation between the functions A(a, A) and B(c, A).

It is easy to write —a - ¢ in the factorized form Eq. (37). For instance, in the case of polarized
photons we may write

2 _ _ _ _
cos2(a—c)= % Z / xyl xﬁc;)sZ(a ¢)1 y«/icosZz(c ¢+ m/2)
0

de .

x,y==+1
(39)
The fractions that appear in Eq. (39) can take negative values and therefore do not qualify as
probabilities. In other words, model Eq. (39) has to be rejected on elementary grounds.

11.4. Probabilities and Bell-type inequalities

For completeness and because probabilistic models are often used to argue that Bell-type
inequalities only say something about the existence of joint probabilities and probability spaces
[32,33,48,49,52,53,55,58,59,64,66,68-70,72,74,75,78-82,114,115], we collect some known results
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about the Bell-type inequalities in a probabilistic setting [32,33,52,114]. Our presentation differs
from earlier ones [32,33,52,114] in that we extensively use the representation of the frequencies in
terms of their moments.

The first step in formulating a probabilistic model that describes the data generated by an EPRB
experiment with settings a and c is to introduce the probability P(x1, xz|a, ¢) of the event (x1, x3),
where x;, X, = 1. As before, we use the notation |a, c¢) to keep track of the context (condition)
(a, ¢) in (under) which the experiment was performed.

With the aim of testing for violations of e.g., the Bell-CHSH inequality, repeating the experiment
for different pairs of settings (a, d), (b, ¢) and (b, d) yields data that, within the probabilistic model,
are described by P(x1, x3|a, d), P(x1, x2|b, €), and P(xq, x2|b, d), respectively.

In applying Kolmogorov’s probability theory, it is often silently assumed that the context for
which the Kolmogorov probability space (KPS) (2, F, P) has been constructed is fixed for the
remainder of the discourse [3,4]. However, a probabilistic model of the data obtained by four
EPRB experiments with different settings (a, c), (a, d), (b, ¢) and (b, d) has to explicitly account
for these four different contexts. In general, each of the four bivariates P(x1, x»|a, c), P(x1, Xz|a, d),
P(x1, x2|b, ¢), and P(x1, x»|b, d) has its own KPS.

In the case of the EEPRB experiment (see Appendix B.5), there is only one single experiment
being performed in the context (a, b, ¢, d). Therefore, the probability P(xi, X5, X3, X4]a, b, ¢, d) is
well-defined and so is the associated KPS. In contrast, in principle only bivariates can be used to
model data originating from an EPRB experiment simply because conceptually and physically, it is
impossible to perform the four EPRB experiments as a single experiment. Consequently, in this case
there does not exist a probability P(x1, x2, X3, X4]a, b, ¢, d) and a single KPS that describes the data
of the collective of these four EPRB experiments. However, we may relax the requirement of a joint
KPS a little and ask the mathematically interesting question if there are conditions that guarantee
the existence of a joint distribution f(x1, x2, X3, X4) such that only some of its marginals, namely
Dy Xyt f(x1, %2, x3,X4) = P(x1,x2]a, c) etc.,, describe the data of the four EPRB experiments.
Such conditions were first established by A. Fine [32,33]. Conditions for the existence of a joint
distribution of three variables and a generalization to the many-variable case are also given in
Refs. [114,116], respectively.

The purpose of this subsection is to give an alternative derivation of these conditions in terms
of moments such as K; = ), _.,xP(x1,xz/a,¢) and K1 = >, ro=t1X1%2P(x1, X2[a, €) of the
probabilities. In particular, we focus on the statement that the Bell inequalities hold if and only
if there exist a joint distribution f(x1, X2, X3, X4) for all observables of the experiment, returning the
marginals P(x1, X»|a, ¢), P(x1, X2|a, d), P(x1, x2|b, ¢), and P(x1, x»|b, d) which describe the data of the
four EPRB experiments with the corresponding settings. N

From the viewpoint of modeling experimental data, the existence of f(x1, x5, X3, X4) does
not bring additional insight in the physical processes that generated the data. Whenever
the conditions change and new data is collected, we have to recompute f(x1, X, X3, X4) from
the new data. Importantly, even if such a joint distribution f(x1, x>, x3, x4) is found to exist,
this description of EPRB data accomplishes exactly the opposite of the separation in parts,
facilitated by the quantum-theoretical description. Indeed, the joint distribution provides a
description of the four particular experiments as whole.

In the following, we only consider real-valued functions f(xi, x2, ...) of two-valued variables
{1 = £1,x% = £1,...} for which N = > _.\ .y f(X1,%,...) # 0. Then, we can,
without loss of generality, replace f(x1, x2, ...) bnyxh X2, ...)/N such that the new f(xq, xo, ...) is
normalized to one. The existence of a normalized, nonnegative real-valued function f(x1, X2, .. .)
is a prerequisite for constructing a KPS [3,4]. Our aim is to establish the equivalence between
the existence of a nonnegative, normalized function f(x;, X2, ...) and inequalities involving the
moments of f(xq, xz, .. .).

Recall that (relative) frequencies are restricted to be ratios of finite integers, and are therefore
discrete data belonging to the domain of “reality”, as defined in the introduction. As also explained
in the introduction, probability theory belongs to the class M2C which requires the introduction
of concepts (e.g., “real” real numbers such as the square root of 2) that are outside the domain
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of discrete data. Notwithstanding these conceptual differences, the equivalences established in this
section hold for both frequencies (discrete data) and probabilities.

11.4.1. Bivariates of two-valued variables
Without loss of generality, any real-valued, normalized function f(x1, x,) of the two-valued
variables x; = £1 and x, = +1 can be written as
1+ Kix1 + Ky x5 + Ky X1 14+ x1(Kq + Ky x1%2) + K12 X1%2

fx1,%) = 1 = 1 . (40)

From Eq. (40) it follows that

1= Z Z Fx1, %), (41a)

=+1x=
K = Z Z xf(x1,%2), i€ {1,2), (41b)
=£1x=
Ky = Z Z x1%of (%1, X2), (41c)
x1=£1xy==%1

where the normalization of f(x1, x,) implies Eq. (41a) and the K’s are the moments of f(x;, x3).

If 0 < f(xq1,%) < 1, application of the triangle inequality to Eqs. (41b) and (41c) yields
IKi] < 1, |[K3] < 1, [Ki2] < 1, and |K; £ K3 < 1 4 Kqp. Conversely, from K| < 1, |[K]| < 1,
and |Kj,| < 1 it immediately follows from Eq. (40) that f(x1, x) < 1. As |[K; £ K3| < 1+K;, implies
—Xx1(K1x1 + K2x1%2) < 14 K12x1X2, it immediately follows from Eq. (40) that f(x, x) > 0. Therefore,
we have

Theorem I: There exists a real-valued, normalized, nonnegative function f(xi,x;) of
two-valued variables with moments K;, K, and Ky, if and only if all the
inequalities

Kil< 1, [K3] =1, [Kp|= 1, (42)
|K1 :l:K2| <1 ﬂ:KQ s (43)

are satisfied. The explicit form of f(x;, x,) in terms of its moments is given
by Eq. (40).

11.4.2. Trivariate of two-valued variables
Without loss of generality, any real-valued, normalized function f(x1, X5, x3) of the two-valued
variables x; = £1, x, = &1, and x3 = +1 can be written as
1+ Kix1 4+ K3 %o + K3 X3 4+ Kq3 X1X2 + Kq3 X1X3 + Ko3 X2X3 + K123 X1X2X3

f(x1, %2, %3) = 3 . (44)

From Eq. (44) it follows that

1= Z Z Zf(X],Xz,X;.) (45&1)

=+1x=%1x3=

K = Z > Z Xif(x1,%2,x3), 1€ (1,2,3), (45b)
x1=%1xp=%1x3=%1
Kj= Y Y Y xxfla,x,x), (i) €{(1,2),(1,3),(2,3), (45¢)

x1=£1xy=%1x3==%1
Kips = Z > Z XiXoXaf (X1, X2, Xs), (45d)
=+1x=%1x3=

where the K’s are the moments of f(x1, x,, x3) and Eq. (45a) is a restatement of the normalization
of f(x1, X2, X3).
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If 0 < f(x1,x2,x3) < 1, it follows that all the K’s in Eq. (45) are smaller than one in absolute
value. Furthermore, it immediately follows that the marginals f3(xq, x2) = Zx3: 11 (X1, X2, X3),
fa(x1,x3) = szzﬂf(xb X2, X3), and fi(x2, x3) = lezilf(x1, Xo, X3) are real-valued, normalized
and nonnegative bivariates. For each of these bivariates Theorem I holds, implying that |K; + Kj| <
1+ K; for (i, j) € {(1, 2), (1, 3), (2, 3)}.

Other inequalities involving moments follow by adding inequalities f(x1, X2, X3) > 0 for different
values of (x1, X2, x3). For instance, we have

Af(+1L, +1, +1) +f(—1, -1, -1)] = 1+ K2 + K13+ K3 > 0, (46a)
4[f(—1, +1, +1) +f(—l, +1, +])] =1—K;; —Ki3+Ky3 >0, (46]))

which can be combined to read |K;; 4+ Kq3| < 1+K>3. Similarly, one shows that |K; — Kq3] < 1—K>s,
|K13 + K23| < 1+£Kj,, and |K12 + K23| < 1=%Kjs.
Adding other pairs of inequalities, we obtain for instance

Af(+1L, +1, +1) +f(—1, =1, +1)] = 1+ K3 + K2 + Kq3 > 0, (47a)
Af (-1, +1, +1) +f(+1, =1, +1)] = 1+ K3 — Ky — Kq3 > 0, (47b)

which can be combined to read |Kj23 4+ Kq2| < 1+Ks. Similarly, one shows that |K1p3 — Kq3| < 1—Kj3,
|K123 + K13| <1+£K,, and |K123 + K23| <1=xKs.

Conversely, assume that 1+K3 +Kq3+Kijp3 > 0, 1+K;+K;+Kio > 0,and 14+Ky5 +Ki3+Ky3 > 0
and consider the expression X = 1+K;+K; + K3 +Ki3 + K13+ Kz3 +Kia3. Using Kio3 > —1—K3 — K3
we have X > K;+K>+Ki3+K>3 and using K;+K, > —1—Kj, > 0 we obtain X > —1—K+Ki3+K>3
which, by virtue of K13 + K3 > —1 — Ky, is nonnegative. Similarly, one can show that all eight
expressions of f(xq, xo, x3) are nonnegative if all inequalities between all the first, all the second,
and the third moments hold.

Collecting all these inequalities, we have

Theorem II: There exists a real-valued, normalized, nonnegative function f(xq, xo, X3) of
two-valued variables with moments given by Eq. (45) if and only if all the
inequalities

Kil =1, [K|=1, [K3]<T,

(48a)
Ki2l < 1,[|Ki3|<1, [K3|<1,
KixK| <1+£Kyy, |[KE £K31<1%+Kq3,
Ky 2| < 12, K 3|< 13 (48b)
Kz = K3] < 1%£Kzs,
|Kip £Ki3] < 1£Kp3, [Kip 2 K3|< 1xKs3, (480)

c

K13 £ K3 < 1%£Ky2,
Kips £ Kial < 1+£K3, |Kips £Ki3|<1+£K;5,
|Ki23 £ Kip| < 3, |Kiaz £ Ki3]< 2 (48d)

K13 £ Kp3| < 1£Ky, |Kip3|< 1,

are satisfied. The explicit form of f(x1, X2, x3) in terms of its moments is given
by Eq. (44).

Clearly, there is a lot of redundancy in Eq. (48). There are 36 inequalities in Eqs. (48b)-(48d)
but we need only eight inequalities to express the requirement that f(xq, X2, x3) > 0. We list the
inequalities involving the moments in the form Eq. (48) to display the symmetry with respect to
the indices 1, 2, and 3 and to emphasize that Eq. (48c) directly relates to all Bell-type inequalities
involving correlations (the Kj’s) obtained from runs of the EPRB experiments with three different
pairs of settings. Note that because of Eq. (N.6), if one of the pair of inequalities in Eq. (48c) holds,
also the other two pairs also hold.

Rewriting Eq. (48d) as

—1F K F K = Kias = 1K F Ky, (i,),k)=1(1,2,3),(2,1,3),(3,1,2), (49)
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it follows that

-1+ {D,ag IKi + K] <Kip3 < 1— {Ds% |Ki — K|, (i,),k)=(1,2,3),(2,1,3),(3,1,2). (50)
ij. i,

Assume that we are given first and second moments that satisfy the inequalities Eqs. (48a)-(48c).
Then, according to Eq. (50) and Theorem II, we can always find a value of Kj;3 such that the
resulting expression Eq. (44) is a normalized nonnegative function f(x1, Xo, X3). Therefore, there exist
a normalized, nonnegative trivariate of three two-valued variables if and only if the first and second
moments satisfy the inequalities Eqs. (48a)-(48c).

11.4.3. Quadrivariate of two-valued variables

EPRB experiments with photons aiming at demonstrating a violation of the CHSH inequality
require collecting data for four different pairs of contexts/conditions. As it is physically impossible to
perform the four EPRB experiments in one run of an experiment, there does not exist a probability
P(x1, X2, X3, X4|a, b, ¢, d) and a single KPS that describes the data of these four EPRB experiments. As
a matter of principle, four bivariates with different KPS’s are required to model the data originating
from the four runs of the EPRB experiments.

However, as mentioned earlier, it is of interest to ask for the conditions that guarantee the
existence of a joint probability f(x1, x2, X3, X4) such that some of its bivariate marginals yield
moments that describe the data of the four EPRB experiments. This question was first answered
by A. Fine [32,33].

Without loss of generality, any real-valued, normalized function f(xq, X, X3, X4) of the two-
valued variables x; = &1, x, = +1, x3 = £1, and x4, = +1 can be written as

1+ K]X] + K2X2 + K3X3 + K4X4
16
i Kiox1X + Ki3X1X3 + K14X1X4 + K33X2X3 + KpaX2X4 + K34X3X4
16
K123x1%2X3 + K124X1X2X4 + K132X1X3X4 + K334X2X3X4 + K1234X1X2X3X4
16

f(x1,X2, X3, X4) =

. (51)

where the moments are given by

1= Z Z Z Zf(XLXZ:XLXAl)’ (52a)

x1=%1xp=%1x3=%1x4==%1

Z Z Z Z xif(x1, X2, X3, X4), 1€ {1, 2,3, 4}, (52b)

x1=£1xy=%1x3=%1x4=%1

Kj = Z Z Z ZXinf(X],Xz,X3,X4),

x1=%1xp=%1x3=%1x4==1

(i,j) € {(1,2).(1,3), (1, 4), (2, 3), (2, 4), (3, 4)}, (52¢)

Kije= Y > Y > xxxef(x, x2, X3, xa),

x1=£1xy=%1x3=%1x4=%1
(i,j, k) € {(1,2,3),(1,2,4),(1, 3,4),(2,3,4)}, (52d)

Kip3a = Z Z Z Z X1X2X3X4 f (X1, X2, X3, X4) . (52e)

x1=%1xp=%1x3=%1x4=%1

Ki

Using the triangle inequality, it is easy to show that none of the K’s exceeds one in absolute value.
Summing Eq. (51) over one of the four variables yields the trivariate marginals

1+ Ky x1 4+ Ky x5 + K3 X3 + K13 X1X2 + Kq3 X1X3 + Ko3 XoX3 + K123 X1X2X3

Ja(x1, %2, X3) = 3 , (53a)
1+ Ky x1 + Ky %o + Ky x4 + Kio %1% + Kia X1X4 + Kog X2X4 + K124 X1X2X4
f3(X1, X2, x4) = 3 , (53Db)
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14+ Kix1 4+ K3x3 + Ky x4 + K13 X1X3 + K14 X1X4 + K34 X3X4 + K134 X1X3X4

fa(x1, %3, %4) = 3 , (53¢)
1+ Ky Xy + K3 X3 + Kq X4 + K3 XoX3 4+ Kog X0X4 + K34 X3X4 + Ko34 X2X3X4
fi(x2, x3,%4) = 3 , (53d)

Trivariates are called “compatible” if their common first and second moments are the same.
The trivariates in Eq. (53) are pairwise compatible. For instance, we have szz 11f1(x2, X3, %4) =
lezil fa(x1, x3, X4) = (1 + K3 X3 + K4 X4 + K34 X3x4)/4, showing that fi(x2, X3, x4) and f>(x2, X3, X4)
have the same moments K3, K4, and Ks,.

As in the case of the trivariate, linear combinations of f(x1, X2, x3,x4) > 0 with different
(x1, X2, X3, X4) yield inequalities in terms of the K’s. However, it saves work to use the inequalities
Eq. (48) and simply change the subscripts properly. In addition, from |Ki3 — Ki4| < 1 — K34 and
|K23 + K24| <14 Ksg it follows that

IK13 — K14 + K3 + Ka4| < [Ki3 — Kya| + K23 + Kp4| < 2, (54)

which is one of the Bell-CHSH inequalities [93,95]. The other forms of Bell-CHSH inequalities follow
by interchanging subscripts. Therefore, the existence of the quadrivariate 0 < f(x1, xp, X3,%4) < 1
implies that all Bell-type inequalities hold.

Let us assume that four EPRB experiments yield discrete data which, to good approximation,
can be described by the frequencies f(x1,x3) = (1 + Kix1 + K3x3 4+ Ki3X1x3)/4, f(X1,X4) =
(1 + Ky + Kgxq + Kiax1x4)/4, f(x2,%3) = (1 + Kaxa2 + K3x3 + Ky3X2%4)/4, and f(xp,x4) =
(14K5 X3+ K4 x4+Ko4 X2%4)/4, and that all Bell-CHSH inequalities such Eq. (54) hold. Note that these
four frequencies are nonnegative, normalized, pairwise compatible bivariates of their respective
arguments. Therefore, Theorem I applies to each of them, implying that their moments satisfy the
inequalities Eqs. (42) and (43) (with appropriate changes of subscripts).

The mathematical problem we now pose ourselves is under which conditions there exists a
nonnegative, normalized function f(x1, X2, X3, X4) with moments Ki, K>, K3, Ks, K33, K14, K33, and
K>4. If we can find/construct f(xq, X2, X3, X4), we have succeeded to describe the outcomes of the
four EPRB experiments with different contexts/conditions by one joint distribution, which can then
be used to construct a probabilistic model with a common KPS.

As an intermediate step, we prove that given the four, pair-wise compatible bivariates f(x, x3),
f(x1,x4), f(x2, x3), and f(x;, x4) and the assumption that Eq. (54) hold, there exist two compatible
trivariates f>(x1, X3, X4) and fi(x2, X3, X4) with moments Ky, K3, Ky, K13, K14, K34, and K3, K3, Ky, K>3,
K>4, K34, respectively. Except for K34, all moments are already known, derivable from the four, pair-
wise compatible bivariates. From the data of the four EPRB experiments, we cannot infer the value
of K34.

Therefore, the existence of f,(xq, X3, X4) and fi(x2, X3, X4) depends on whether is possible to
assign a value to K34 in the interval [—1, 1] such that f,(x1, X3, X4) and f1(x2, X3, X4) are nonnegative,
normalized trivariates. Lemma I (see Appendix J) shows that there exists such a value of the moment
—1 < K34 < 1 if there exist four nonnegative, normalized, pair-wise compatible bivariates f(x1, x3),
f(x1, x4), f(x2,x3), and f(x2, X4) and if Eq. (54) holds. Furthermore, the moments Ki, K3, Kj, Ki3,
K14, and K34 satisfy the inequalities Eqs. (48a)-(48c) (with appropriate change of subscripts). From
Theorem II and Eq. (50) it then follows that we can always find at least one value of K;34 such that
there exists a nonnegative, normalized trivariate f,(x1, X3, X4) with these moments. Similarly, K>, K3,
Ky, Ka3, K24, and Kz, satisfy the inequalities Eqs. (48a)-(48c) (with appropriate change of subscripts),
implying that there exists a nonnegative, normalized trivariate fi(x;, x3, X4) with these moments.

Following Fine [33], we use these compatible trivariates f,(x1, X3, X4) and fi(x2, X3, x4) to define
the quadrivariate

3 Bumagaisit) L Tama hln1,0) > 0
F(x1, %2, X3, %4) = . (55)
0 , le:i1f2(x1ax3y X4) =0
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As 0 < fo(x1,%3,%4) < 3 _p1fo(X1,x3,%) and 0 < fi(xo,X3,x4) < 3., 1y fo(X1, X3, X4) imply

2
that f(x1, x3, X4)x fi(x2, X3, X4) < (le:i]fz(x1sx3vx4)> < D=1 f2(x1, %3, x4) < 1. Therefore,

0 < ]NF(X1,X2,X3,X4) < 1 showing that Eq. (55) defines a normalized, nonnegative quadrivariate.
From Eq. (55) it follows immediately that

K = Z Z Z Z xiT(Xl,xz,x3,x4) =K, i€{1,2,3,4}, (56a)

x1=%1xp=%1x3=%1x4==%1

Ki= > > 3 > xxfxix,x3,x) =Ky, (i,1) € ((1,3),(1,4), (2, 3), (2, 4), (3, 4)}, (56D)

x1=%1xp=%1x3=%1x4==*1

as required. The expression of the second moment —1 < Elz < 1 in terms of the other first
and second moments is rather lengthy and therefore not given here. By construction, the K's
(with proper combination of subscripts) satisfy the inequalities Eqs. (48a)-(48c), which include the
Bell inequalities. Conversely, if (K1, K3, K4, K13, K14, K34) and (K>, K3, Ky, Ko3, K4, K34) satisfy the
inequalities Eqs. (48a)-(48c), we can construct a normalized, nonnegative quadrivariate with these
moments.

11.4.4. Discussion

From the foregoing, it is abundantly clear that in contrast to Bell's original derivation, the
derivation of Bell-type inequalities in the probabilistic setting does not rely on assumptions about
“locality”, “macroscopic realism”, “non-invasive measurements” and the like. Violations of Bell-
type inequalities derived within the framework of a probabilistic model are a signature of the
non-existence of a joint distribution rather than of some signature of “quantum physics”.

Most importantly, describing two-valued data of EPRB experiments performed under four differ-
ent conditions in terms of a joint distribution (if it exists) accomplishes exactly the opposite of the
description in separated parts provided by quantum theory, see the text in boldface in Section 11.4.

11.5. Stochastic hidden-variables model for the data collected in EPRB laboratory experiments

The fundamental problem with applying Bell's model Eq. (35) to the description of experimental
data is the following. Evidently, in any laboratory EPRB experiment, before one can even think about
computing correlations of particle properties, it is necessary to first classify a detection event as
corresponding to the arrival of a particle or as something else. Such a procedure is missing in both
the EPRB thought experiment and Bell’s model Eq. (35). If the aim is to describe the data of an EPRB
laboratory experiment, it is necessary to generalize Bell’s model, for instance by incorporating such
an identification procedure. To the best of our knowledge, such a generalization was first studied
in Refs. [117,118].

As illustrated in Fig. 3 and further explained in Section 9, for any particular choice of settings, the
raw data produced by EPRB experiments comes in pairs {(Xm, tn)lm =1, ..., M} and {(yn, t})In =
1,..., N} where, in practice, the numbers of detected events M and N are unlikely to be same.
In most EPRB experiments, the t’s represent time tags, times at which the corresponding detectors
fired. More recent experiments [41,42] employ so-called event-ready detection techniques, in which
case the t’s represent voltage pulses. In this case, the detection of a single photon is defined as the
voltage exceeding a voltage threshold, tuned to maximize the violation [41,42] of the Clauser-Horn
(CH) inequality [95]. These experiments have demonstrated a violation of the latter but, unlike for
the experiments discussed in Section 9, did not show results as a function of the rotation angles.
Conceptually and mathematically, the voltage threshold is just another mechanism to identify
pairs by rejecting events [119]. As the model presented in this section can be tailored to these
experiments by a minor modification [119], we focus on building a probabilistic model for the EPRB
experiment with polarized photons depicted in Fig. 3 and discussed in Section 9. A more general
treatment can be found elsewhere [113].

We idealize matters a little by assuming that N = M. Then, the data set looks like £ =
{(Xn, ta, ¥n, t))In = 1,..., N}. As before, for simplicity, for polarized photons we use the angles

34



H. De Raedt, M.I. Katsnelson, M.S. Jattana et al. Annals of Physics 453 (2023) 169314

a and c instead of a and ¢, respectively. Our goal is to construct the simplest probabilistic model
which

1. describes the compound event (x,, tn, ¥n, t;) in terms of processes that are local to station 1
and 2,

2. yields Malus’ law (by construction),

3. yields the averages and the correlation of two spin-1/2 objects in the singlet state,

4. describes the dependence of the correlation on the time-coincidence window W, observed
experimentally (see Section 9),

5. yields the averages and the correlation that are obtained from the quantum-theoretical
description of two spin-1/2 objects in the product state.

For simplicity and in concert with features of the raw data listed in Section 4, we assume
that (Xm, Ym, tm, t;,) and (X,, yn, ta, t;) are uncorrelated for all m # n. Then the probability for the
(Xn, Yn, tn, t,) does not depend on the subscript n, which we omit in what follows.

Without infringing on the axioms of probability theory and without loss of generality, the
probability P(x,y,t,t'|a, b) can always be expressed as an integral over &, ¢, representing the
polarization of the photons arriving in stations 1 and 2, respectively. We have

1 2 2
P(X!yv t# t’|a,C): 47172/ / P(Xay7t7t/|as 6757 ;)p($7 é"a’ C)deC . (57)
0 0

where p(, ¢|a, c) denotes the probability density with which the source emits photons with
polarizations (&, ¢) under the conditions (a, c).

With our eye on constructing a model having the same features as those used by Bell to prove
his theorem, that is independence/separability, we assume that (i) the values of x, y, t, and t’ are
mutually independent, (ii) the values of x and t (y and t’) are independent of ¢ and ¢ (a and &), (iii)
& and ¢ are independent of a or c¢. With these assumptions Eq. (57) becomes [113]

1 2 2
P(X7yv t, t/|a,C)= H f P(X|a’$)P(t|aﬂ$)P(y|Ca{)P(t/|cv C)p(gv C)dédé‘ . (58)
0 0

Note that xy-correlation calculated using Eq. (58) has the same mathematical structure as Eq. (37)
and therefore, according to Bell's theorem, this correlation can never be arbitrarily close to
—cos2(a—c)forall aand c.

However, EPRB experiments [26,88-90] employing a time-coincidence window W to identify
pairs of photons are not described by Eq. (58). Accounting for the time-coincidences requires that
we multiply Eq. (58) by the unit-step function @(W — |t — t|) and integrate over all possible t and
t’. Therefore, the data used to compute the correlations are described by the probability

2 2
P(x, yla, ) = / / P(xla. £)P(YIc, OR(E. ¢la. )dede. (59)
0 0

where

AE. fla.c) = w(§, ¢la, c)p(§, §) , (60)

f w(§’, ¢'la, c)p(§’, ¢ )dg'dt’
and the weight w(§, ¢|a, c) is given by

+o0 +oo
w(&, ¢la, c) / / — |t — t'|)P(t]a, E)P(t'|c, ¢)dt dt’ . (61)

Eq. (59) no longer has the structure of Bell’s model because the probability density Eq. (60) may
depend on (a, c) (violating the notion of separability). In other words, Bell’s theorem does not apply
to the probabilistic model defined by Eq. (59).

In order to proceed, we have to make a choice for the distribution of time delays. As a very
simply choice we take P(t|a, £) = O(t)O(T(§ — a) — t)/T(é — a), where T is a function specified
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below, and obtain
1 T(¢§—a) T(¢—c) , ,
w(§,§|a,c):—[ dt/ OW — |t —t'|)dtdt . (62)
T(§ —a)T(¢ —c) Jo 0

With this definition of P(t|a, &), the integrals in Eq. (62) can be worked out analytically [113].
Inspired by the results of event-by-event simulations [107,108,113], we set T(§ —a) = Tp|sin 2(§ —

a)|? where Ty and d are parameters of the model. As the full expression is not of immediate
interest, we only give the expressions for a few interesting limiting cases [113]:
1 , W=>T,
WQRTo—W)
w(, ¢la, c) = o » d=0and W<To (63)

2W 2
maiE e TOW?) . W0

Let us first demonstrate how Egs. (59) and (62) yield the correct quantum-theoretical expression
for two spin-1/2 objects in a product state. Assume that p(§,¢) = §(& — «)8(¢ — B). Then,
independent of the distributions of t and t’, we find

P(x, yla, c) = P(x|a, a)P(y|c, B), (64)

which has the structure of the probability for a quantum system in product state, see Appendix M.2.
Furthermore, independent of the choice of p(&, ¢), we also recover Eq. (64) if Eq. (63) does not
dependent on & or ¢. Thus, as the first two rows of Eq. (63) show, we also recover Eq. (64) if W is
larger than the maximum time delay Ty or if the parameter d = 0.

Next, we demonstrate that Eqgs. (59) and (62) yield the quantum-theoretical expressions for
the averages and the correlation of two photon-polarizations in the singlet state. We start by
assuming that the source emits pairs of photons with orthogonal polarizations, in symbols p(§, ¢) =
S(E+m/2—2¢).

For small W /T,, we use the expression in the third row of Eq. (63) and insert the expressions
P(x|a, &) = (1+xcos2(¢&§ —a))/2 and P(y|c, ¢) = (1 4+ ycos2(¢ — c¢))/2 known from Malus’ law. By
symmetry, it follows immediately that E{(a,c, W — 0) = E;(a,c, W — 0) = 0. For even integer
values of d, the expression of the correlation Ej;(a,c, W — 0) can be obtained analytically. We
find [113]

—1 0526 , d=0

% sin 26 cos 26 — cos 260 + In[|tan g " 20/2 d=2
Ep(a,c, W - 0) =13 —cos26 , d=4 , (65)

—3 0526 [1424(19 + 5cos46) '] , d=6

—(53¢c0s20 +7cos60)(39 +21cos40)"! | d=8
where 6 = a—c. Clearly, ford = 4and W — 0, the probabilistic model yields the desired correlation
Eix(a,¢) = —cos2(a — c) for two photon polarizations described by the singlet state. For d > 4,

the resulting correlation is outside the scope of what a quantum-theoretical model of two spin-1/2
objects can describe because it violates the Cirel’son bound [98], see Eq. (M.11).

Repeating the calculation with parallel instead of antiparallel polarizations, that is with p(&¢, ¢) =
8(¢ — ¢), simply changes the sign of E(a, b, W — 0) in Eq. (65). The resulting correlation is outside
the scope of what a quantum-theoretical model of two spin-1/2 objects can describe, (because
q < —1/3, see Section 8.2).

In conclusion, the probabilistic model for the raw data produced by EPRB experiments, in
combination with time coincidence counting employed in most of these experiments, does indeed
(for W — 0 and d = 4) yield the averages and the correlation of two spins-1/2 objects in the singlet
state, complies with Malus’ law and can (if d = 0 or W > Tj) also describe two spins-1/2 objects
in the product state.

EPRB experiments that do not rely on coincidence counting but identify photons by a process
that is local to the observation station [41,42] can be treated similarly [ 119]. We only have to replace
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Eq. (62) by
w(§, ¢la, ¢) = w(&la)w(¢|c), (66)
where
[ e _ WO(T(E —a)— W)

and work out the details.
11.6. Subquantum model: event-by-event simulation

In this section, we briefly discuss results obtained by event-by-event simulations that comply
with the operational definition of an NQM, as given in the beginning of this section. In the appropri-
ate limits, event-by-event simulation can reproduce, to very good approximation, all results of the
quantum theory for two spins-1/2 objects [2,97,107,108,113]. As there are abundant publications
about this simulation work, we refrain from describing the algorithm and refer the interested reader
to these publications.

Unlike real experiments, an event-by-event CM of the EPRB experiment can operate in a mode
in which all the data in Dy, D;, D3, and D4 can be extracted from quadruples [2]. Computationally,
this feat is realized by using the same pseudo-random numbers for each of the four different
experiments [2]. In this case, the process that generates the data is said to comply with the notion
of counterfactual definiteness [120].

In the counterfactual definite mode of simulation, the four sets of data originate from one set
of quadruples, and therefore we have A = 1. It then follows from Eq. (9) that Scysy < 2. Clearly,
the counterfactual definite mode of simulation can never generate data that leads to a violation of
the Bell-CHSH inequality. Consequently, Bell’s theorem guarantees that the counterfactual definite

mode of simulation can never yield a correlation that closely resembles E; = —a - c.
Generating raw data & = {(x1, t1,¥1,t]), ..., (X, tn, X, ty)} with the perfect, counterfactual
definite mode of simulation yielding a correlation that closely resembles E;; = —a - ¢ can only

be accomplished by discarding raw data depending on the conditions a and c. Then the new data
sets D), D), D}, and D), no longer have the property that all contribution to the correlations can be
reshuffled to form quadruples.

Fig. 9 shows the results of an event-by-event simulation of EPRB laboratory experiments with
photons in which data is discarded, not by coincidence counting, but by a local procedure mimicking
the one used in the analysis of EPRB laboratory experiments [41,42], a procedure similar to the one
described by Eq. (66). For the complete specification of the simulation algorithm the reader should
consult Ref. [97].

Fig. 9 demonstrates that the correlation (solid squares) and averages (triangles) obtained by the
event-by-event simulation are in excellent agreement with the corresponding quantum-theoretical
results. Also shown by the open circles is the correlation obtained without discarding raw data.
This correlation matches the one obtained from Bell’s modified toy model, see Appendix L.2. For
reference, the dashed line shows the correlation obtained from Bell’s toy model, see Appendix L.1.

In summary, the counterfactual definite mode of simulation can only generate raw data for the
A’s, and B’s which can be extracted from quadruples. Therefore, the correlation computed with this
data can never violate the Bell-CHSH inequality and, by appeal to Bell’s theorem, can never closely
resemble E;; = —cos2(a — c). In complete agreement with model-free inequality Eq. (6), there is
only one way out of the conundrum, namely one has to discard, with whatever procedure, data.
Bell's model Eq. (35) is too primitive. It does not contain such a procedure. On the other hand,
all EPRB laboratory experiments (including the so-called loophole free experiments [40-42]), one
way or another, never use all the raw data to check for violations of Bell-type inequalities but have
their ways to identify a fraction of them as photons. It is this selection process that can give rise
to the violation of a Bell-type inequality (beyond the usual statistical fluctuations) and, in some
cases such as the one discussed in the present and the previous section, yields a correlation that
resembles E;; = — cos2(a — c).
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Averages and correlation
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Fig. 9. The averages and correlations as obtained by an event-by-event simulation of an EPRB laboratory experiment in
which the detection of a photon in a station 1 or 2 depends on a threshold that is local to the respective stations [41,42].
There is no coincidence counting in this set up. Solid line: the correlation E13(a, c) = — cos2(a — c), as obtained from LI
applied to a reproducible and robust experiment (see Section 7) and from the quantum theory of two spins-1/2 objects in
the singlet state; dotted line: the correlation Ej;(a, ¢) = —1+(2/m)arccos(cos 2(a — c)) as obtained from Bell’s toy model
(see Appendix L.1); solid squares: the correlation Egm (see Eq. (2)) computed from the data generated by the event-by-
event simulation; open triangles: the averages (see Eq. (2)) Egl) (A) and Egz) (v) computed from the data generated by the

event-by-event simulation; open circles: the correlation 5512) computed from the data generated by the event-by-event
simulation without accounting for the local thresholds. In the latter case, the simulation data is in excellent agreement
with the correlation obtained from Bell’'s modified toy model (see Appendix L.2). Using a threshold mechanism similar
to the one employed in the so-called loophole free EPRB experiments [41,42], there is excellent agreement between the
simulation data (solid squares and triangles) obtained with the quantum-theoretical description of the EPRB experiment.

12. Conclusion

The view taken in this paper is that discrete data recorded by experiments and mathematical
models envisaged to describe relevant features (e.g., averages, correlations, etc.) of these data belong
in their own, separate universes and should be treated accordingly. Using EPRB experiments as an
example, we have scrutinized various aspects of treating discrete data and mathematical models
thereof separately.

In the universe of discrete data, the number of operations one can carry out on the data without
changing the numerical values of the relevant features is very limited. In fact, we can only resort
to the commutativity of the addition operation to reshuffle the order in which the contributions
to a sum appear. In this paper, we demonstrate that this property suffices to prove new nontrivial
bounds on the value of certain linear combinations (e.g., as they appear in the Bell-CHSH inequality)
of correlations. Being the result of elementary arithmetic, that is being the result of multiplying
and adding numbers which take values plus and minus one only, these nontrivial bounds cannot
be violated by data obtained from EPRB experiments.

Most importantly, the proof of these nontrivial bounds does not require making assumptions
about the process that produced the data. They are “model-free”, linear functions of the number
of quadruples one can create by reordering the contributions to each of the correlations. If the
number of quadruples is equal to the number of contributions to the correlations, the values of
these nontrivial bounds coincide with the values known from the Bell, CHSH, or CH inequalities.
However, these bounds have been derived in the context of a mathematical (Bell-type) model, not
in the context of experimental data. The model-free Bell-type bounds for discrete data, a special case
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of the general model-free inequality, may be violated. However, this violation has no bearing on the
validity of the assumptions that may have provided the motivation to construct the mathematical
(Bell-type) model.

The existence of the divide between the universes of discrete data and mathematical models
thereof is further supported by Fine’s theorem for a probabilistic model of the EPRB experiment.
Of particular relevance to the present discussion is the part of the theorem that establishes the
Bell-CHSH inequalities (plus compatibility) as being the necessary and sufficient conditions for
the existence of a joint distribution of the four observables involved in these inequalities. This
four-variable joint distribution returns the pair distributions describing the four EPRB experiments
required to test for a violation of these inequalities. Fine’s theorem holds in the mathematical-model
universe only. Only in the unattainable limit of an infinite number of measurements (that is by
leaving the universe of discrete data), and in the special case that the Bell-CHSH inequalities hold,
it may be possible to prove the mathematical equivalence between the model-free and Bell-type
bounds.

Having established that the discrete-data and mathematical-model universes are separate enti-
ties, a major question is how to establish the applicability and validity of a particular mathematical
model. In the case that the results of individual measurements are assumed to be unpredictable, as
in EPRB experiments, the comparison is through the averages, correlations, etc., predicted by the
mathematical model with those of the experimental data.

Starting from discrete data, we have demonstrated that the construction of a mathematical
model giving a concise description of the averages and correlations computed from these data
yields the quantum-theoretical model of the EPRB thought experiment. Essential ingredients of
this construction are separation of conditions and the assumptions that the relevant features are
reproducible and change smoothly with smooth variations (robustness) of the conditions under
which the experiments are carried out.

In contrast to the conventional approach which postulates that quantum theory models the
process by which experiments produce data, the constructive approach adopted in this paper is
free of all issues created by attempts to attach an interpretation to the symbols appearing in the
mathematical model and to “explain” that each laboratory measurement yields a definite result.

Our construction shows that the quantum model of the EPRB experiments is just one particular
description of the relevant features of the discrete data. We have argued that compared to other
representations of data obtained from EPRB experiments, quantum theory is exceptionally powerful
in that it can represent the relevant features of the data of EPRB thought experiments with many
different settings in terms of only fifteen numbers.

In summary, we have shown that by starting from the discrete data produced by EPRB experi-
ments, all controversies about the meaning of the violation of Bell-type inequalities evaporate and
that the quantum-theoretical model of the EPRB experiments emerges (not by postulate) as a very
powerful description of the data.

In conclusion, there seem to be two non-compatible alternatives to model physical phenomena:

e In the data-driven approach, the experimental data are considered to be immutable facts.
The first step is to analyze the data without committing to a particular mathematical model
for the process that is imagined to have created the data. The second step is to construct
mathematical models which provide a concise, accurate picture of how the relevant features of
the data change as the conditions under which the experiments have been performed change.
Being data-driven, the applicability of the mathematical model is measured by the degree by
which the model prediction fits (not produces) the data. The quantum-theoretical description
emerges as a powerful, compact, separated, interpretation-free model of the data generated
by EPRB thought experiments.

Alternatively, one can develop event-based computer models that are capable of mimicking
the processes that give rise to the experimental data. Essential for the success of this step is
that the model accounts for all processes, including the data processing part, that are critical
for the experiment to succeed. There is no obstacle for constructing probabilistic models
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and computer models for EPRB laboratory experiments which produce data to which the
quantum-theoretical description of EPRB thought experiments fits very well.

e In the theory-driven approach, it is (often implicitly) assumed that the production of experi-
mental data is governed by a (possibly yet to be discovered) pre-existing mathematical model.
Starting from a set of axioms, this approach proves theorems about these mathematical models
and by assumption, also about the phenomena that we experience with our senses. In the
case of the EPRB experiment, the failure of Bell’s model to describe the experimental data
is regarded as a proof that one or more of the assumptions (e.g., locality, etc.) underlying
the model do not hold in the universe that we experience with our senses. This failure has
given birth to notions such as “spooky action on a distance”, “nonlocality”, etc., injecting new
elements to the already vast universe of interpretations of quantum theory. The theory-driven
approach leads to endless discussions about the interpretation of the mathematical symbols
used.

If one is mainly interested in modeling natural phenomena, the data-driven approach has some
outstanding merits. If one is mainly interested in discussing “interpretations”, the theory-driven
approach is the method of choice. The choice between these two alternatives depends on one’s
world view and interests. Summarizing the above discussion of the two non-compatible alternatives
to model physical phenomena, one should exert extreme caution when switching between these
two alternatives and, in the authors’ opinion, failing to do so is what plagues the interpretation of
the results of EPRB experiments.
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Appendix A. Pairs, triples, quadruples, and octuples

In mathematics, an n-tuple is an ordered list of n elements, denoted by (A, B, ...). In this paper
we call (A, B) a pair, implicitly assuming it is ordered, a 2-tuple. Similarly, the lists (A, B, C) and
(A, B, C, D) are referred to as a triple (3-tuple) or quadruple (4-tuple), and an ordered list of 8
elements is an octuple.

Appendix B. Proof of the model-free inequality for correlations of discrete data

The inequality derived in this section applies to any experiment that produces discrete data,
which without loss of generality, can always be thought of as being rescaled to lie in the interval
[—1, +1]. If the data were real-valued, it is no longer possible to uniquely identify the quadruples
which are essential for the proof of the inequality. We derive a bound on a certain combination of
correlations, each one computed from data gathered under different conditions. The nth data item
obtained under condition x is denoted by Ay, forn = 1, ..., N where |Ax | < 1. Recall that the
subscript x labels the condition only and does not, in any way, implicitly imply a dependence of
Axn on x in terms of a MM. As before, the symbols A and B represent discrete data.

Inspiration to derive the model-free inequality stems from the standard procedure of demon-
strating a violation of a Bell-CHSH inequality. The latter consists of performing EPRB laboratory
experiments with four different pairs of settings (a, c), (a, d), (b, ¢) and (b, d). As mentioned earlier,
all EPRB laboratory experiments use, e.g. time-coincidence, local time windows, voltage thresholds,
etc. to identify pairs. This results in a further, often substantial reduction of the number of pairs.
Furthermore, in practice, the number of observed pairs may depend on the setting. However, data
sets can always be truncated such that the number of pairs of the four sets is the same. Thus, an
EPRB laboratory experiment, with or without some post-processing of the data, produces discrete
data A p, etc, forn = 1,..., N in four independent runs of length N. The procedure of how this
data was obtained is irrelevant for the derivation of the inequality presented in this section.

The data sets obtained for four different conditions denoted by 1, 2, 3 and 4 read

D1 = {(A1n, Bin) | A1l < 1, |Binl <15 n=1,...,N}, (B.1a)
Dy = {(A2n, Ban) | [A2nl <1, [Banl < 15n=1,...,N}, (B.1b)
D3 = {(Asn, B3n) | |Asnl < 1, |B3pl <1;n=1,...,N}, (B.1c)
Dy = {(Agn, Ban) | [Agnl < 1,[Bgnl <15 n=1,...,N}, (B.1d)

where N is the number of pairs. From the discrete data Eq. (B.1), we compute the correlations

N N N N
1 1 1 1
G = N ;Al,nBl,ns G = N ;AZ.nBZ,nv G= N ;A3.n33,n, G = N ;A4.n34.n . (B.2)

To simplify the notation somewhat, in this and all other appendices, we use the symbols C instead
of ES“Z) for s =1, 2, 3, 4 to denote correlations.

In general, each contribution to the correlations Eq. (B.2) may take any value in the interval
[—1, 4+1], independent of the values taken by other contributions, yielding the trivial bound

IGFGI+IGECGI<4. (B.3)

Without introducing a specific model for the process that generates the data, we can derive a
bound that is sharper than Eq. (B.3) by making use of Eq. (N.5). To this end, we first identify the
contributions to Cy, G, C3 and C4 which, after suitable reshuffling of the terms, can be brought in
the form xz F xw + yz £ yw to which Eq. (N.5) applies.
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Unfortunately, writing down the idea of suitable reshuffling in mathematical notation requires
a cumbersome notation, possibly giving the wrong impression that the proof that follows is
complicated. The reader who is not interested in the technicalities of the proof should nevertheless
read the next paragraph to understand what is meant by “quadruples” and can then jump to the
final result Eq. (B.9). .

We introduce permutations P(.), P(.), P(.), and P’(.) of the first N integers and rewrite Eq. (B.2)

as
1< 1< 1<
G= N ZALP(n)BLP(n% G= N ZAz,F(n)Bzﬁ(n)» G= N ZA3,I~’(n)B3,F(n)’

n=1 n=1 n=1
N

1

=N ZA4,P/(11)B4,P’(n) . (B.4)

n=1

Obviously, reordering the terms of the sums does not change the value of the sums themselves.
Suppose that we can find permutations P(.), P(.), P(.), and P’(.) such that

X = Arp) = Ay pys ¥ = A3y = Aap1), Z=Brpa) =Bspny, w=By54)=Bap), (BS)

showing that the variables of the octuple (A1 p(1), A3 5(1)> A3 B(1)» Aa.(1)> B1.p(1) B3 1) B2 ,,(1 , Bapiy)
form the quadruple (x, y, z, w), defined by Eq. (B.5). In other words if we can find P(.), P(.), P( ), and
P’(.) such that Eq. (B.5) holds, the original data in terms of octuples exhibits structure that allows
at least that one octuple to be reduced to a quadruple.

From Eq. (B.5), it is clear that by definition, the permutations always interchange pairs of data
(As.n, Bs.n) within a particular data set s = 1, 2, 3, 4, that is the mapping is of the kind (A n, Bsn) —
(As.iv, Bs.v), replacing n by n’ for both the A and B simultaneously, for the same value of s. There is no
reshuffling of the items within pairs, as would be the case in for instance (As 5, Bs.n) = (As.ws Bs.n)
with n” # n”. This is important because if the data pairs have been selected through a time-
coincidence (see Fig. 3) or any other procedure, application of these permutations does not affect
the pairing of events within one particular data set. In other words, the permutations would never
mix up the time tags of data pairs.

Using the triangle inequality and Eq. (N.5b), we have

1
G FCI+IGEG] < | > (AvpnBrr F A 5B i)
n=2
1
+ N Z (A3 5nBs Ay = Adp(wBar(m)
n=2
1
N|xz Fxw| + |yz £yw|,
2 1
= N N Z Av,pn)B1.pn) F Az 5myB2.5m)
n=2
1
+ N Z (A3 P(n) B3 ,P(n) + A4 P’ n)B4 P'(n) ) (B-6)
n=2

From Eq. (B.6) the importance of identifying quadruples is clear. For every quadruple which we can
create by reshuffling data pairs, the contribution to the expression on the left hand side of Eq. (B.6)
is limited in magnitude by two, not by four. L

Now assume that we can find permutations Q(.), Q(.), Q(.), and Q’(.) such that for k =
1, ..., Knax

Xk = Ar,qi) = Ax 5y Yk = A3 gy = A0ty Zk = Bioty = B3 gy, Wk = By gy = Baa/hs (B.7)
Y3
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where Kn.x < N denotes the largest integer for which we can find these four permutations, that is
Kmax is the maximum number of pairs in each data set that form quadruples. If it is not possible to
find any such quadruple, we have K,.,x = 0 by definition.

The choice represented by Eq. (B.7) is motivated by the EPRB experiment, see Fig. 2. In general,
other choices to define quadruples are possible and may yield different values of the maximum
fraction of quadruples. However, if max(|C; — G| + |C3+ Cy4|, |C1 + G| + |Gz — C4) = 4 — 2A
(possibly up to some statistical fluctuations), as is the case in some of the numerical examples
discussed below, we may be confident that the choice Eq. (B.7) yields the largest value of A that
can be obtained by reshuffling of the data.

Repeating the steps the yielded Eq. (B.6) Knax times, we find

N
2K, 1
G F Gl 4G+ Gl = =5 + | Y. (AawBiam FAgmBaam)
n=Kmax+1
1 N
g 2o (AsawBsam = AemBaeim)
n=Kmax+1
2K, -
max
= 7,\,3 tS Y ([AvemBiom| + |A2.60B2.a0)]
n=Kmax+1

+ A3 gnBs.Gm| + [As'mBaa/m])

< 2Krnax + 4(N - Kmax)

- N N
where 0 < A = Kiax/N < 1is the ratio of the maximum number of quadruples K, to the number
of pairs N, a measure for the “hidden” structure in the collection of octuples.

In summary, we have proven that independent of the origin of the four sets of discrete data
Eq. (B.1), the correlations computed from these data sets must satisfy the “model-free” inequality

=4-2A, (B.8)

G —Gl+I1G+Gl<4-24 , |G+GI+IG—-Gl<4-24A, (B.9)

where A = Kpax/N is the fraction of maximum number of quadruples one can find by reshuffling
the original data set of octuples. Appealing to the triangle inequality once more, it follows from
Eq. (B.9) that

Seusi = max |G —G+CG+C| <4—24, (B.10)
(i,j,k,l)emy

where m, denotes the set of all permutations of (1, ..., n) and Scysy denotes the Bell-CHSH function.

The same procedure can be used to derive inequalities for the correlations computed from three
instead of four data sets. Alternatively, following Bell [93], we can obtain these inequalities by
replacing C4 in Eq. (B.9) by one and we have

ICi+GC| <3-2A+GC;, |G—GC|<3-2A-C;. (B.11)

From Eq. (N.6) it then follows that |Ci + Cj| <3 —-2A £ forall (i, ], k) € 3, are the appropriate,
model-free “Bell inequalities” for discrete data.

Inequalities Eqgs. (B.9)-(B.11) cannot be violated by data of a (real or thought) EPRB experiment,
unless the mathematical apparatus that we use is inconsistent (a possibility which we do not
consider). For example, assume that an EPRB laboratory experiment yields data for which Scysy > 2,
that is the data violate the Bell-CHSH inequality. Then we can use Eq. (B.9) to find that A < 2 —
ScusH/2, implying that the number of quadruples in the sets Eq. (B.1) does not exceed (2—Scysu/2)N.
On the basis of the experimental data only, this is all one can say with certainty.
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It should be noted that we have not proven that all the octuples in the sets Eq. (1) can be
reshuffled to form quadruples if the correlations satisfy |C; F C2|+|C3 = C4] < 2. In fact, it is
easy to construct simple counterexamples. For instance, if D; = {(+1, —1),(+1,+1)}, D, =
(=1, =1), (=1, +1)}, D3 = {(—=1, = 1), (+1, = 1)}, and Dy = {(+1, +1), (=1, = 1)}, then C; = G, =
C3 = 0 and C4 = 1, yet it is impossible to reshuffle the data such that they can be extracted from
two quadruples. If we assume that the averages of A; and A,, A3 and A4, By and Bs, B, and B, are
the same and |C; F G;|+]|Cs = C4| < 2, our numerical experiments suggest that almost all of them
can be reshuffled to create quadruples (see examples below). This observation in the realm of data
can be understood in terms of Fine’s theorem [47], see also Section 11.4.

We emphasize that inequalities Egs. (B.9)-(B.11) do not depend on how the data was generated
and/or processed and hold in general, independent of (any model for) the process that generates
the data.

B.1. The Eberhard inequality for discrete data

The EPRB experiments reported in Refs. [34,35] have only one detector in each of the two stations
(see Fig. 2). To account for the photons that have been detected and would have been detected by
the missing detectors and also to account for undetected photons, the events are classified in two
groups. Adopting the notation used in Refs. [34,35], the events that are recorded by the detector
and all other events are given the label “+” and “0”, respectively. If desired, the averages and the
correlations can be calculated as usual (see Eq. (2)) by assigning the values x,y = +1 to the
former and x, y = —1 to the latter class of events. Of course, the correlation obtained from these
experiments may be different from those used to compute the correlations appearing in inequalities
Egs. (B.9)-(B.11).

In the EPRB experiments reported in Refs. [34,35], the number of interest is the combination of
counts [121]

EBERgaa = N 7 — NJ® — NO* — N/ F . (B.12)

The rationale for considering EBERga, is that if the data is generated in the form of quadruples or
for instance, by a CM of a Bell-type (counterfactual definite) model, we have EBERg,, < 0.

We derive the appropriate, model-free upper bound to EBERy., by proceeding in a manner
analogous to the one used to derive inequalities Eqs. (B.9)-(B.11). First, we introduce two-valued,
integer variables X; , and Y , to represent the detection of an event at stations 1 and 2, respectively.
As before, the subscript s = 1, 2, 3, 4 refers to the data sets obtained under the conditions (a, c),
(a,d), (b, c), and (b, d), respectively. If station 1(2) reports a “+” event for the nth pair, we set
Xsn = 1(Ysn = 1). Otherwise, we set X; , = 0 (Y., = 0). In terms of these variables we have

N
EBERgata = Y _ [X1.0Y10 — Xan(1 = Ya) = (1 = X3.0)Y30 — Xan¥an] - (B.13)

n=1

If X1.p = Xo.n, X3.n = Xan, Yi.n = Y3.n and Yz, = Yap, as it would be if these data were generated
in the form of a quadruple or by a CM of an LHVM, simply enumerating all sixteen possibilities
shows that —1 < Xy ,Y1.n — Xon(1 — Yo0) — (1 — X3.1)Y3.n — X4nYan < 0. In general, we have
=3 < XY — Xo (1 = Yo ) — (1 = X34)Y30r — Xq4Yar < 1. .

Next, as before, we assume that there exist permutations Q(.), Q(.), Q(.), and Q’(.) such that for
allk=1, ..., Knax,

Xt.a00 = X200 X330 = Xa0'00> Y000 = Y3509 Yo.a00 = Yaoh - (B.14)

If we can find these four permutations, we have identified Ky.x pairs in each data set that can be
represented by Kiax quadruples. If it is not possible to find any such quadruple, we have Kiyax = 0
by definition. Note that the permutations Q(.), Q(.), Q(.), and Q’(.) and the value of Ky,.x are not
necessarily the same as in case where the involved data has been obtained by analyzing the data
of EPRB experiments with two detectors per station.
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Writing Eq. (B.13) as
Kmax

EBERuwa = Y [X1.amY1.am — X5 5(1 = Y2, 5(k) — (1= X5 g59)¥3 50 — Xa.00 Va0t
k=1

+ Z [X1.000Y1.000 — X2.5(1 — Yo 5(k))

k=Kmax+1
—(1 = X3 509)Y2.000 — X400 Yao't)] - (B.15)
and using the respective lower and upper bounds for each of the terms in the sums we obtain
—3(N — Kmax) — Kmax < EBERgata < N — Kiax, (B.16)
or, expressed in terms of the fraction of quadruples,
—3+2A§%§]—A, (B.17)

where the value of A is not necessarily the same as the value of A obtained by analyzing the data
of EPRB experiments with two detectors per station. This is because the data of the X’s and Y’s
obtained by performing EPRB experiments with one detector per station are not the same as the
data of the A’s and B’s obtained by performing EPRB experiments with two detectors per station. If
all the data pairs that contribute to N+, N;”°, NJ* and N, * can be reshuffled to form quadruples,
we have A = 1 and Eq. (B.17) becomes the CH inequality EBERg4,;a/N < 0 [95] for discrete data.

As an illustration, we take the data reported in the Supplemental material of Ref. [41]. The
valid trials for the four settings are N; = 875683790, N, = 875518074, N3 = 875882007, and
N4 = 875700 279 such that the total number of counts Nyoy = N;+N>+N3+N, = 3502784 150 [41].
After post-processing by adjusting voltage thresholds, the corresponding photon counts are NT t=
141439, N7 = 67941, NJ* = 58742 and N, = 8392 [41].

To estimate A from the data provided in Ref. [41], we have to be able to truncate three of the
four data sets such that they have the same number of pairs N. In principle, this requires processing
the four full sequences of individual events. Fortunately, in view of the large number of events, this
is not necessary if we proceed as follows. We define N = (N; + N + N3 + N4)/4 and compute
N+ = LNN++/N1—| = 141441 = N + 2 where |x] denotes the nearest integer to x. Similarly,
we obtain N, = | NN;*/N, | = 67955 = N;° + 14, N* = | NN+ /N3] =58730 = Ny — 12, and
NJr+ LNN++ /N4 = 8392 =N, ™. Clearly, the errors made by using the procedure of estimates
N Nj N+ etc. are negligible. Therefore to a very good approximation, we have

EBERgaa _ Nj © — NSO —NJ* —Nj+
N N

the same as the value of ] reported in Ref. [41]. From Eq. (B.17) it then follows that A < 0.99999273.

In Ref. [41], the tiny number of 7.27 x 10%, an order of magnitude smaller than the expected
statistical error of 1/+/N =~ 3 x 107°, is taken as strong evidence that the data cannot be
described by an LHVM of the Bell-type [41,42]. Moreover, the data was obtained by adjusting voltage
thresholds [41,42], a process that is not accounted for in the LHVM that is being rejected but is
essential to create data such that Ny — Nj® — No* — N;* > 0. Clearly, for the reasons explained
in Section 6, the logic that leads to thrs conclusron needs to be revised.

On the basis of the experimental data, the correct conclusion one can draw from A < 0.99999273
is that a very small fraction of all the selected pairs of photon events cannot be rearranged to create
quadruples.

=7.27 x 1078, (B.18)

B.2. The Clauser-Horn inequality for discrete data

Given the same data sets, bounds on CHg,t,, also expressing structure in the data, can be derived
as follows. Consider the expression (or similar expressions with permutations of the subscripts
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(1,2,3,4))
CHaata(%, ¥) = fi%, ¥) = (%, y) + (%, ¥) + fa(x, y)
1Y D) B2+ )+ ek D) i)

z=—1,1
—h(z,y) + f5(z, ) + fa(z, ¥)) . (B.19)
where x,y = =41 and the frequencies fi(x,y) for s = 1,2, 3,4 are given by Eq. (4). Recall that

X,y = 1(—1) correspond to events of type “+”(“0"”). Expressing these frequencies in terms of their
moments, that is, using Eq. (5d) yields

1 x
CHyaa(X, ) = - " Zy (Egu) ~ B2 4 g +Ez(1]2)> ' (B.20)
Adopting the notation for the correlations adopted in this, we have
1 xy
CHaara(x, y) = —3 + 7 G —G+G+0, (B.21)
and using Eq. (B.10), we obtain
1—-A 1—-A
-1- < CHgata(%, ) < (B.22)

2

The relation between CHdata(x y) and the CH inequality becomes clear if we assume that E
Eél), E(z) Egz , E(1 Eil , and E 4 ). This assumption complies with the idea of a descnptlon
in terms of a Jomt distribution for EPRB experiments with four different pairs of settings, see
Section 11.4, or in terms of Bell’'s model Eq. (35). With this assumption, Eq. (B.22) reduces to

CHaaua(%, ¥) = f1(x, ¥) — folx, ) + f5(x, ¥) + fa(x, y) — Z (f(x,2) + f5(z, y)) (B.23)
z=—1,1

Assuming that all the data originates from a set of quadruples we have A = 1, identifying
(1)=(a,c), (2)=(a,d), (3) = (b, ¢), and (4) = (b, d) as before, and adopting the notation used by
CH, Eq. (B.22) becomes

-1 = ny(37 C) - ny(a, d) + ny(bv C) + ny(bv d) - Px(b) —P (C) =< 0» (B-24)

which, for every pair (x, y), is the CH inequality in its usual form [95]. Note that the assumption
made to obtain Eq. (B.24) implies that E(U E(l 52), and E only depend on a, b, ¢, and d,
respectively, justifying writing the marglnals w1th respect to the variables x and y as Py(b) and
Py(c), respectively.

Using Py—y(b) = >_,_, _Pu(b,d)and Py—i(c) = > ,_, _ Pui(b, c), Eq. (B.24) becomes
—1<Pii(a,c)—Pii(a,d)—P_y(b,c) - P._(b,d) <0, (B.25)

a violation of the right-hand side of Eq. (B.25) by data being interpreted as the break-down of local
realism [41,42].

In conclusion, as in the case of the Bell-CHSH inequality, also the CH inequalities Eqs. (B.24)
and (B.25) are of little use to draw conclusions from the analysis of discrete data originating from
(numerical) experiments, because for such data, the appropriate inequality is Eq. (B.17) with CHgata
given by Eq. (B.12), not inequality Eq. (B.25) which has been derived within the context of a
MM which assumes counterfactual definiteness. Being model-free mathematical facts, inequalities
Egs. (B.17) and (B.22) cannot be violated.

B.3. Lower bounds to the fraction of quadruples

It is easy to derive lower bounds to the fraction of quadruples A if all the A’s and B’s that appear
in Eq. (B.1) take values 41 only. The most naive method to compute such a lower bound ignores
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the possibility of reshuffling the data such that the correlations remain the same and simply counts
the number of times the four conditions

Ay =Axk, Az =Ask, Bik =Bz, Byx =Bay. (B.26)

are satisfied. We denote the faction of quadruples thus obtained by A. Obviously, calculating Ais
easy and computationally inexpensive.

With similar computational effort, we can compute a better lower bound as follows. First we
note that

1
C = N (n(ﬂr +nM — n(j)_ — n(_llr) , (B.27)
where n(ﬂr n), n(J:)_ and n(ﬂr are the numbers of times Ay, = +1and By, = +1, A1, = —1
and By, = —1,A;, = +1and By, = —1, and A;, = —1 and By, = +1, respectively.

Expressions similar to Eq. (B.27) hold for G, C3, and C4. The number of quadruples that can

be formed with all A’s and B’s equal to +1 is given by N,y = min (nﬂ,nﬂ,nﬂ,nﬂ).
Denoting N__ = min ng)_n(_z)_n(f)_n(_‘”_) N,_ = min (nﬂlnflnflnfl) and N_; =

min (n(j)+ n(,zl n(f)+ 11(,4)+ , it follows immediately that the fraction of quadruples that can be

formed by reshuffling must be greater than or equal to
X = Nyy+N__+N,_ +N_4

N
that is A is a lower bound to A (0 < A < A < 1). Furthermore, it is obvious that A < Z, where A

has been obtained by imposing the condition Eq. (B.26) and Alis given by Eq. (B.28).
Therefore, we have

Schst < |IC1F Gl +[C3+Cyl <4—2A<4—-2A<4-—2A <4, (B.29)

, (B.28)

where the upper bound of four is a mathematical triviality.
B.4. Computing the maximum number of quadruples

The technicalities of the proof of Eq. (B.9), involving four permutations of N numbers, are of little
use when we actually want to find all quadruples in the data sets Eq. (B.1). Indeed, enumerating all
(NY* possibilities by a computer quickly becomes prohibitive as N increases (for instance (10!)* ~
173 x 10%4). However, the proof of the model-free inequality Eq. (B.9) only requires the existence
of a maximum number of quadruples, the actual value of this maximum being irrelevant for the
proof.

Nevertheless, it is instructive to write a computer program that uses uniform pseudo-random
numbers to generate the data sets Eq. (B.2) and finds the number of quadruples. By specifying
an algorithm that generates the data, we have defined a CM. At first sight, finding the value of
A itself may require O(N!*) arithmetic operations. Fortunately, the problem of determining the
fraction of quadruples A can be cast into an integer linear programming problem which, in the
most relevant case for which the A’s and B’s take values 41 only, seems easy to solve by considering
the associated linear programming problem with real-valued unknowns. In practice, we solve the
latter by standard optimization techniques [122] and then check that the solution takes integer
values only, which it always seems to do (an observation for which we have no proof). In this case,
the solution of the linear programming problem is also the solution of the integer programming
problem. We have implemented the computer program in Mathematica®.

The key step is to list all possible sixteen combinations of A’s and B’s that form quadruples and
to attach a variable to each of these combinations, as shown in Table B.3. In terms of the n;’s, the
numbers of (A, B) pairs in each data set is given by the expressions listed in Table B.4.

Next, we simply count the number of times a pair (1, +=1) occurs in the data sets D1, D,, D3 and
D4, and denote the sixteen numbers thus obtained by Ny(4+1, +1), Ni(+1, —1), ..., Ngy(+1, —1),
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Table B.3

Lists of all possible combinations of the pairs of data which form quadruples, written
in a slightly different notation to emphasize the quadruple structure. Given the data
sets D,, D3 and D4, the optimization task is to find the numbers m; > 0 for

i=0,...,15 that maximize the number of quadruples.
(B1, A1) (A2, B) (Bs, Aq) (A3, Bs)
mg (+1,+1) (+1,+1) (+1,+1) (+1,+1)
my (=1, +1) (+1,+1) (+1,+1) (+1,-1)
m (+1.+1) (+1,+1) (+1,-1) (-1.41)
ms (—1,+1) (+1,+1) (+1,-1) (—1,-1)
my (+1,41) (+1,-1) (=1, +1) (+1,+1)
ms (=1,+1) (+1,-1) (=1,+1) (+1,-1)
mg (+1,+1) (+1,-1) (-1,-1) (—1,+1)
my (=1,+1) (+1,-1) (-1,-1) (-1,-1)
mg (+1,-1) (=1,+1) (+1,+1) (+1,+1)
mg (—-1,-1) (—-1,+1) (+1,+1) (+1,+1)
Mo (+1,-1) (—-1,+1) (+1,-1) (—1,+1)
miy (=1,-1) (=1,+1) (+1,-1) (=1,-1)
mia (+1,-1) (=1,-1) (=1,+1) (+1,+1)
mys (—-1,-1) (-1,-1) (—1,+1) (+1,-1)
My (+1,-1) (=1,-1) (-1,-1) (=1,+1)
Mmis (=1,-1) (=1,-1) (-1,-1) (-1,-1)
Table B.4
Total counts of different pairs (A, B) belonging to the set of quadruples.
(A, B) n1(A1, B1) na(Az, By) n3(As, B3) n4(A4, Bs)
(+1,+1) mg + my + my + mg mo + my + my +m3 mg + my + mg + my mo + my + mg + mg
(+1,-1) my +msz +ms +my mg + ms + mg +my my 4+ ms + mg + my3 my + ms + My + my3
(=1,41) mg + My + Mz + Myy mg + Mg + Myo + M1y my + Mg + Myg + Mg my + ms3 + Myo + My
(=1,-1) Mg + My + My3 + Mys Mz + My3 + Myg + Mys ms + mz + my; + mys Mg + M7 + Myg + Mys

N4(—1, —1). These numbers completely determine the values of the correlations Cy, C;, C3, and Cy,
e.g., C; = (Ny(+1, +1) — Ny(+1, —1) — Ny(—1, +1) + Ny(—1, —1))/N. The same sixteen numbers
serve as input to the linear optimization problem. Denoting the number of pairs (A, B) in data set
Dy that do not belong to the set of quadruples by u(A, B) > 0, we must have

Ni(A, B) = m(A, B) + (A, B), N= )" Nex,y), U= ) u(x.y), (B.30)
x,y==+1 x,y==+1

for k = 1,2, 3,4 and all pairs (A, B) = (£1, +1). Note that U cannot depend on k because the
number of pairs which do not belong to the set of quadruples must be the same for all four data
sets.

The final step is then to minimize the number of pairs which do not belong to the set of
quadruples, that is we solve the linear minimization problem

15
min (U =N-— Zml) (B.31)
i=0

in 32 unknowns (the m;’s and u,(A, B)'s), subject to 33 inequality constraints (m;, u,(£1, £1),U > 0
for all i, k) and 16 equality constraints (see Eq. (B.30)). For all cases that we have studied, the linear
programming solver yields integer-valued solutions only.

The results of several numerical experiments using N = 1000000 pairs per data set can be
summarized as follows:

o If the A’s and B’s are generated in the form of quadruples all taking random values +1, the
program returns A = 1, |C; — G3| 4 |C3 4+ C4] = 0.00063, and |C; 4+ C3| 4 |C3 — C4| = 0.0028
such that Eq. (B.9) is satisfied.
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e If all A’s and B’s take independent random values +1, the C’s are approximately zero. We have
|Gt FG|+C £ <4—2A =2(14€)where 1 3> € > 0 reflects the statistical fluctuations
in Ny(+1, 4+1), Ny(4+1, —1), ..., Ng(+1, —1), Ngy(—1, —1). This, perhaps counter intuitive, result
may be understood by referring to Eq. (B.29). If N is very large, we may (in the case at hand)
expect that Ni(4+1,4+1) & Ni(+1, —1) = ... & Ny(+1, —1) & Ny(—1, —1) = N/4. From
Eq. (B.28) it then follows that A = 1 — €. In our numerical experiment, ¢ = 0.002.

o If the pairs (A1;, B1,i), (A2, B2j), (A3 kB3.k), and (A4 B4 ) are generated randomly with frequen-
cies (1 — c1A1,iB1i)/4, (1 — C2A2 By j)/4, (1 — c3A3 kB3 k)/4, and (1 — csA4,Ba )/ 4, respectively,
the simulation mimics the case of the correlation of two spin-1/2 objects in the singlet state
if we choose ¢; = —¢, = ¢3 = ¢4 = 1/+/2. Recall that in this particular case, quantum theory
yields max (|C; F G| + |C3 £ C4)) = 24/2 ~ 2.83 [98], see also Section 11.2.

Generatmg four times one million independent pairs, we obtain A ~ 0047, A ~ 0.292,

~ 0.585, Scysu = |C1 — Co] + |C3+ (4] =~ 2.83 and 4 — 2A =~ 2.83, demonstrating that
the value of the quantum-theoretical upper bound 2+/2 is reflected in the maximum fraction
of quadruples that one can find by reshuffling the data.

e Same as in the previous case except that we use the probabilistic model of Section 11.5 as
the basis for the CM to generate pairs of data for the case d = 6 for which Scysy ~ 3.20 >
242 =~ 2.83, showing that these data cannot be described by a quantum-theoretical model
of two spin-1/2 objects. Choosing ¢c; = —c; = ¢3 = ¢4 = 0.80 and generating four times one
million independent pairs, we obtain Scysy = [C1 — G2+ |C3 + C4| &~ 3.20 and 4 —2A = 3.20.

e Same as in the previous case except that we consider the case d = 8 for which Scysy =~ 3.34 >
24/2 =~ 2.83, showing that these data cannot be described by a quantum-theoretical model
of two spin-1/2 objects. Choosing ¢c; = —c; = ¢3 = ¢4 = 0.83 and generating four times one
million independent pairs, we obtain Scysy = [C1 — G2+ |C3 + C4] ~ 3.34and 4 —2A =~ 3.34.

e In Appendix B.1, we have used the data of the “Significant-Loophole-Free Test of Bell's Theorem
with Entangled Photons” experiment [41] to estimate that the fraction of quadruples that can
be created by reshuffling the data is A < 0.99999273. Using the quantum state (|HV) +
r|VH))/+/1 4+ r? assumed to describe the ideal experiment [41], we obtain Scysy ~ 2.34 > 2
and (see Eq. (B.17)) (N;4+(a,€¢) — Ni4(b,d) — N_,(b,c) — N, _(a,d))/N ~ 0.085 > 0, where
a, b, ¢, and d correspond to the angles 94.4°, 62.4°, —6.5°, and 25.5°, respectively, and r =
—2.9. Generating four times one million independent pairs (A ;, B1,i), (A2, B2j), (A3 kB3 k), and
(A4,1B4,) with frequencies corresponding to the quantum-theoretical probabilities, we obtain
A~ 0. 275, A~ 0. 491, A ~ 0.829, such that 4 — 2A =~ 2.34 =~ Scysy. As mentioned
in Appendix B.1, the value of A ~ 0.829 obtained from the quantum-theoretical model does
not necessarily relate to the value A < 0.99999273 obtained by analyzing the experimental
data.

e In the case of Bell's modified toy model (see Appendix L.1) for which C(a, ¢) = —(1/2) cos(a—c)
or the probabilistic model of Section 11.5 with d = 0 or W > T,, we have Scysy = +/2.
Choosing ¢c; = —c; = ¢c3 = ¢4 = 1/2«/5 and generating four times one million independent
pairs, we obtain Scysy = |C; — Go| + |C3 + C4] &~ 1.42 and 4 — 2A =~ 2.00.

Except in the first case, the values of A quoted in the other cases fluctuate a little if we repeat the
N = 1000000 simulations with different random numbers. Except for the first, second, and last
case, the data suggest that inequality Eq. (B.9) can be saturated.

B.5. Illustration: Extended EPRB experiment

Fig. B.10 shows the layout of an extended Einstein-Podolsky-Rosen-Bohm (EEPRB) experiment
with spin-1/2 particles [56,97]. In this idealized experiment, all Stern-Gerlach magnets perform
selective (filtering) measurements [6,123]. Selective measurements allow us to attach an attribute
with definite value (e.g. the direction of the magnetic moment) to the particle. For instance,
assuming that SG1, SG3 and SG4 perform ideal selective measurements, a particle leaving SG1 along
path S; = +1 (51 = —1) will always leave SG3 (SG4) along path S, = +1(S; = —1) if b = a. In this
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Fig. B.10. Layout of the extended Einstein-Podolsky-Rosen-Bohm thought experiment with spin-1/2 particles [56,97]. A
source is emitting a pair of magnetic particles in two spatially separated directions, directed towards observation station
1 and 2. The observation station 1 (2) contains three identical Stern-Gerlach magnets SG1, SG3, and SG4, (SG2, SG5, and
SG6) with their uniform field component along the directions a, b, and b (c, d, and d), respectively. Particles leaving
SG3, ...,SG6 are registered by identical, ideal detectors (not shown). The binary variables x;; = 0,1 for i = 1,2, 3,4 and
j = 1,2 indicate which of the four detectors at the left (j = 1) and right (j = 2) fire. For each incoming particle, only
one of the detectors in station 1 and only one of the detectors in station 2 fires, implying that for j = 1,2, only one
of X1, X2, X3j, and x4 can be nonzero. For each pair of particles emitted by the source, this experiment produces the
quadruple (S1, Sy, S3, S4).

case, the value of this attribute (called spin in quantum theory) is given by S;. The same procedure
is used to attach attributes to particles leaving the other Stern-Gerlach magnets.

As only one of X4 1, X2.1, X3,1, and X4 1 and only one of X1 5, X3 2, X3 2, and X4 ; can be nonzero (see
also Fig. B.10), the four variables

St =X1,1+ %21 — X301 — X4.1,

Sy = X110 —X2,1 +X31 — X4.1,

S3 = X12+X22 — X32 — X4.2,

S4 = X12 —X22 +X32 — Xa2, (B.32)
can only take values +1 or —1. Clearly, S; and S, (S5 and S;) encode, uniquely, manner, the path
that the left (right) going particle took. The four variables Eq. (B.32) form a quadruple (S1, S», S3, S4)
which completely describes the outcome of the experiment for each pair of particles emitted by the

source.
Next, we attach a pair label n to the S’s and compute correlations according to

N
1
Ki = > SinSin - (B.33)
n=1
Because the EEPRB experiment generates quadruples only, A = 1. Therefore, it follows from

Eq. (B.9) that independent of the directions a, b, ¢ and d, we must have
|Kik — Ki + K + Ki| < 1K — Kul + |Kie + Kp| <2, (i.j. k1) € 74 . (B.34)

One run of the extended EPRB experiment yields enough data to compute all possible correla-
tions of the four S’s. For instance, we have Ki3 = Cy¢, K14 = Cag, K23 = Cpe, and Ky4 = Cpq, Showing
that one run of the extended EPRB experiment suffices to compute all the correlations that would
be obtained by four runs of the EPRB experiment for the conditions (a, c), (a, d), (b, ¢), and (b, d). Of
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course, the essential difference between these two experiments is that the former always generates
quadruples (S1.n, S2.n, S3.n, S4.n) Whereas the latter not necessarily does.

In conclusion, if the four correlations that appear in the Bell-CHSH inequality are obtained by
performing the EEPRB experiment, we have

ScHsH < 2, (B.35)

showing that these correlations can never violate the Bell-CHSH inequality [56,97] even though
all pair-wise correlations are given by the quantum-theoretical description in terms of the singlet
state.

Appendix C. Plausibility versus mathematical probability

Plausible reasoning is concerned with relating the truth of propositions given the truth of
other propositions [103]. The key concept is the plausibility, denoted by a real number p(A|B),
quantifying that proposition A is true conditional on proposition B being true. Logical inference is the
mathematical framework, a set of rules, by which we perform calculations with plausibilities. Logical
inference allows us to reason in a logically consistent manner which is both unambiguous and
independent of the individual, in particular if there are elements of uncertainty in the description.
For a detailed discussion of the foundations of plausible reasoning, its relation to Boolean logic and
the derivation of the rules of logical inference, see Refs. [7,104,105,124,125]. It can be shown that
plausibilities may be chosen to take values in the range [0, 1] and obey the rules [7,104,105,124,125]

a. p(A|1Z) + p(A|Z) = 1 where A denotes the negation of proposition A, and Z is a proposition
assumed to be true.

b. p(AB|Z) = p(A|BZ)p(B|Z) = p(B|AZ)p(A|Z) where the “product” BZ denotes the logical product
(conjunction) of the propositions B and Z, that is the proposition BZ is true if both B and Z
are true. Defining a plausibility for a proposition conditional on the conjunction of mutual
exclusive propositions is regarded as nonsensical.

¢. p(AA|Z) = 0 and p(A + A|Z) = 1 where the “sum” A + B denotes the logical sum (inclusive
disjunction) of the propositions A and B, that is the proposition A + B is true if either A or
B or both are true. These two rules show that Boolean algebra is contained in the algebra of
plausibilities.

The rules (a-c) are unique. Any other rule which applies to plausibilities represented by real
numbers and is in conflict with rules (a-c) will be at odds with common-sense reasoning and
consistency [7,124,125].

“Mathematical probability” refers to the key concept in Kolmogorov’s axiomatic framework of
probability theory [3]. Clearly, the rules (a-c) are identical to those of the calculus of probability
theory [3,126,127]. However, logical inference does not involve concepts such as set theory, sample
spaces, random variables, probability measures, countable (or finite) additivity, etc., which all are
essential to the mathematical foundation of probability theory [3,126,127]. Perhaps most important
is that in general, the logical inference approach does not require (but can also deal with) a set of
elementary events or propositions into which the propositions under scrutiny can be resolved.

Appendix D. Solution of the logical inference problem

Expressing the requirements that the Fisher information Eq. (12) should be independent of 6,
positive and minimal [23] we have

0lx(9) 2 9E12(0) | 9%Era(6) E1x(6) (3512(9)>2 —0
36 1—E%0) 06 362 1—E%L0)\ 96 o

(D.1)

The solution dE1,(#)/96 = 0 can be discarded because then I¢(#) = O, corresponding to the
uninteresting case in which the correlation between the x and y does not change with 6. As
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—1 < E;p(f) < +1 (otherwise Eq. (11) does not represent a plausibility), we may substitute
E12(0) = cos g(0) in the expression in the right brackets and obtain

92E12(0) E12(6) 0E12(0) 3%g(0)
002 T 1-E50) \ 00 262

of which the only nontrivial solution reads g(6) = u6+¢ where u and ¢ are constants of integration.
Substituting E1,(6) = cos(uf + ¢) in Eq. (12), we obtain Iz(#) = u?, independent of 8, as expected.
Moreover, for n any integer, 6 + 2ns describes the same experiment with a - ¢ = cos 6. Therefore,
we must have Eq3(0) = E12(0 + 2nsr), implying that u = n where n is a positive integer (we exclude
n = 0 because then E;5(0) does not depend on 8) and we have

2
) = —sing(f) =0, (D.2)

E12(0) = cos(nf + @), Ig0)=n? n=1,2,.... (D.3)
Appendix E. Bell’s proof of his theorem

In the first proof of his theorem [43], Bell explicitly used the assumption of perfect anticorrelation
to derive an inequality which is slightly different from Eq. (N.9a). The theorem then follows from
a contradiction derived by using this inequality. Adopting Bell's notation (but omitting the bars),
written in full detail Eq. (N.9a) reads

/ Aa, 2)B(c, Mu(h) d £ / Aa, 2)B(d, A)u(r) dx

<1 i/B(c, B, () dx . (E1)

Let us temporarily allow for the idea that data and a model thereof live in the same universe.
If we were to insist that the functions A(a, 1), B(c, A), and B(d, 1), living in the realm of the MM,
map one-to-one to the outcomes of the EPRB laboratory experiment, we face two problems. In
Eq. (E.1) and also in Bell’s original proof, A(a, 1), B(¢c, A), B(d, 1) € [—1, +1] and as the outcomes
take values 1 only, the mapping between the real numbers and the discrete data does not exist.
Let us therefore consider the special case that A(a, 1), B(c, 1), B(d, A) = =+1. Then, the mapping
exists, at least mathematically.

With the EPRB setup in mind (see Fig. 2), A(a, ») = 1 represents data collected on, say the left
side whereas B(c, A) = £+1 and B(d, A) = +1 would represent data collected on the opposite side.
Clearly, this creates an apparent conflict because in an EPRB laboratory experiment we cannot have
one side collecting both B(c, 1) = 1 and B(d, 1) = 41 simultaneously if ¢ # d. However, from the
viewpoint of data collected in the EPRB laboratory experiment, there is no conflict at all. Performing
the experiment with settings (a, ¢) yields data for A(a, ) and B(c, A). Likewise, performing the
experiment with settings (a, d) and the same set of A’s as used in the first experiment yields data
for A(a, ) and B(d, A). From these data we certainly can compute (approximations to) the three
integrals in Eq. (E.1), even though we cannot perform an experiment to measure B(c, 1) and B(d, A)
simultaneously. This apparent conflict illustrates once more that empirical data and a model thereof
do not live in the same universe.

Bell’s proof does not suffer from the named conflict. Bell wrote [43,93]

/A(a,A)B(c, A)(A)da — fA(a,A)B(d, () di :/A(a,A)B(c, 1) (1 +A(c, A)B(d, 1))
w(n)dr

- /A(a, A)B(d, 1) (1 +A(c, 1)B(c, 1))

wu(A)da . (E2)

Note that the integrands in Eq. (E.2) contain products of terms which are not accessible in an EPRB
laboratory experiment. However, in the universe of MMs this is not an issue as the functions that
appear in Eq. (E.2) are well-defined. The last integral in Eq. (E.2) vanishes by Bell’s assumption of
perfect anticorrelation A(c, 1) = —B(c, X) for all c. Using the triangle inequality and the assumption
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that |A(a, A)| < 1, [B(c, A)| < 1, |B(d, A)| < 1, we obtain

‘ / B(c, M)u(n) dh — / A(a, L)B(d, 2)u(0) d

which is the inequality used by Bell to prove his theorem. Eq. (E.1) is different from Eq. (E.3) but, as
Bell showed, also leads to the conclusion that the expressions of the correlations (A(a)B(c)) = Fa-c,
(A(Q)B(d)) = +a - d, and (A(c)B(c)) = *c - d is incompatible with Eq. (E.3). More generally, Bell’s
theorem states that the correlation

C(a,c) = /A(a, A)B(c, A)u(A)dAr, (E4)

<1+ /A(c, AB(d, A)(r)dAr, (E.3)

cannot arbitrarily closely approximate the function —a - ¢ for all a and ¢ [43,93]. Assuming that
C(a,c) = —a - ¢ and choosing, for instance, a = (1, 1,0)/\f2, c = (1,0,0),d = (—1,0,0),
Eq. (E.3) becomes ~/2 < 0, clearly a contradiction. Bell’s theorem is a restatement of the existence
of contradictions, derived from Eq. (E.3).

The assumption of perfect anticorrelation is necessary to arrive at Eq. (E.3) but is not necessary
to prove Bell’s theorem, as Bell and CHSH (Clauser, Horn, Shimony and Holt) showed by considering
four instead of three functions [93,94,96], also avoiding the conflict of the kind mentioned earlier.
In the case of four functions, the proof of the theorem follows directly from Eq. (N.9b), as we now
show.

E.1. Proof of the Bell-CHSH inequality
Using the triangle inequality and |xy £ xz| < 1£yzif |x| <1, |y|] < 1, and |z| < 1 (see Eq. (N.5))
we have

|C(a, ¢) — C(a,d)+ C(b, c)+ C(b,d)| < |C(a, c) — C(a,d)| + |C(b, c) + C(b, d)|

< / (IAa, 2)B(c, &) — A(a, A)B(d, A)|
+ |A(b, M)B(c, ) + A(b, 2)B(d, 1)) s2(A) dAr

< /(1 — B(c, A)B(d, A) + 1+ B(c, A)B(d, 1)) pu(A)dA

2/ pw(\)dr =2 (E.5)

In the proof of Eq. (E.5), there is no conflict of the type encountered in the proof of Eq. (E.1). If we
assume that C(a, ¢) = —a-c, it is not difficult to find a’s, b’s, ¢’s and d’s for which inequality Eq. (E.5)
is violated. Bell's theorem is a restatement of the existence of these violations.

We emphasize that inequalities Eqs. (E.3) and (E.5) have been derived within the context of the
MM Eq. (35) in which the integration over X is over the full domain of A. From the perspective of
EPRB laboratory experiments, the application of Eq. (E.5) can only be justified if the data produced
by the EPRB laboratory experiment comes in the form of quadruples, as in the case of an extended
EPRB experiment [97]. For all EPRB experiments performed up to this day, there is no evidence that
this is the case.

E.2. Bell’s theorem and separation of conditions

Applied to separating conditions in the description of EPRB data (see Section 8, Bell’s theorem
tells us that if we are given data collected under conditions (cy, ¢;) with correlation C(cy, ¢3) it may,
depending on the values taken by the latter, be mathematically impossible to find functions f(c1, A)
and g(cy, A) such that

Clcr, ) = /f(Cl,)»)g(Cz,)x)M(k)dl, (E.6)
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Fig. F.11. Conceptual representation of an experiment with an idealized Stern-Gerlach magnet (cylinder). A source
produces neutral particles carrying magnetic moments that are aligned along the direction represented by the unit vector
c. The magnetic field gradient of the Stern-Gerlach magnet with its uniform magnetic field component along the directions
of the unit vectors d diverts each incoming particle into one of two, spatially separated directions labeled by Sq = +1 and
Sa = —1. The discrete values of these labels describe the quantum state of the magnetic moment of the particle. Particles
leave the Stern-Gerlach magnet with their magnetic moment along +d, labeled by the spin quantum number Sq = +1.
Quantum theory predicts that the number of particles with quantum numbers Sq = +£1 is proportional to (14 Sqc-d)/2.

if we impose the constraints |f(cq, A)| < 1and |g(cz, A)| < 1. Given C(cy, ¢3), if it is found that there
do not exist scalar functions f(cq, A) and g(c,, 1) satisfying the aforementioned constraints, and a
density w(A) such that Eq. (E.6) holds, using matrices instead of scalar function seems like the first
alternative to explore.

Appendix F. Application of Bell’s theorem to Stern-Gerlach experiments

Bell’s theorem, see Section 11.1, stripped from all relations to the EPRB experiment, tells us that
scalar functions A(c, 1) and B(d, A) such that

c.d= f Alc, MB(d, 2) () d, A, )] < 1, B(d, )] < 1, 0 < u(h), / dh () = 1.
(F.1)

do not exist. We apply Bell’s theorem to the experiment sketched and explained in the caption of
Fig. F.11. According to quantum theory, the number of particles leaving the Stern-Gerlach magnet
along the direction labeled by Sq = +1 is proportional to (1+ Sq ¢-d)/2. Consequently, the average
value of Sq is (Sq) = stzil Sa(1+Sqc-d)/2=c-d.

Thus, in the notation of Section 8, Bell's theorem guarantees that there do not exist functions
—1<Z(xr,d) < 1,0 < f(X, ¢) <1 (with the symbol A denoting an arbitrary collection of variables)
and a measure 0 < u(XA) < 1 such that

/ Fou oph)dr =1, / Zon, d)f (A, ©p(h)dr = c - d, (F2)

for all unit vectors ¢ and d.
From Eq. (F.2), it is clear that “locality” actually means “separation”, in terms of scalar functions
in this case, which depend on distinct conditions (¢ and d in this case). We emphasize that this
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no-go theorem is the result of applying ‘Bell’s theorem to the Stern-Gerlach experiment, not to the
EPRB experiment.

Appendix G. Direct proof of a less general Bell theorem: I

We simplify matters by replacing the three-dimensional unit vectors a, b and the hidden variable
A by two-dimensional unit vectors that are specified by the angles a, b € [0, 2] and a real variable
¢ € [0, 27], respectively. We give a simple, direct proof that for any differentiable, periodic, real-
valued functions f(x) = f(x+2m) or g(x+2m) having a finite number of zeros Ky and Kj, respectively,
the expression

1 2
@)= / sign (¢ — a)]sign [g(¢ — )] d. (G.1)
0

cannot be equal to +cos(a — c) for all a and b. Making use of the periodicity, it is sufficient to
demonstrate this fact by considering the function

2

where § = a — c.
Taking the derivative with respect to 6 and using d sign(x)/dx = 28(x) we find

1 27
10)= - /O sign [f(¢ — 0)] sign [g(¢)] dg, (G2)

aw) 1 [ 3 9
o= [t - senteton ao =~ [ aron® P sientsto + o)l o
T Jo 20
(G.3)
Performing the integral over ¢ by using the identity
Ky
) - Pk
sy =3 20—, (G4)
k=1 | ax |¢k
where k =1, ..., K labels the zeros of f(¢), that is f(¢x) = 0, we obtain
Ky Ky
a1(0) 1 1 0of(¢e)
T Z |af(¢k () sign[g(x + 0)] Z [ (¢ + )]
k=1 =1
K K- K —1 K (G5)
o e e ot O .

Interchanging the roles of f(¢) and g(¢) leads to a similar expression.

If I(0) = £cos@ then 9I(0)/00 = Fsinf € [—1,+1]. But Eq. (G.5) shows that within this
range, d1(6)/00 obtained from Eq. (G.2) can at most take the values +1/7, &2/, +3/7 which
clearly does not arbitrarily closely approximate  sin 6 for all 6. For instance, f(¢) = g(¢) = cos¢
(see Appendix L.1) has two zeros and 91(6)/00 = —(2/m)sign[sinf] = F2/m # FsinH for almost
all 6.

Appendix H. Direct proof of a less general Bell theorem: II
In Appendix G, the +1's are obtained from the periodic functions sign[f(x)] and sign[g(x)]. Then,

simply because cos?(x) # sign[f(x)], it is obviously impossible to reproduce Malus’ law. We can
recover Malus’ law if we consider periodic functions 0 < f(x) = f(x + 27) < 1 and define

1
Ala, ) = / sign[f(¢p —a)—rldr, —1<A(a,¢)<1. (H.1)
0

Indeed, if we choose f(x) = cos?(x) and use f(x) to define a CM that generates +1 (—1) events if
cos?(x) > r (cos?(x) < r), these events appear with a frequency given by Malus’ law.
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Without invoking Bell-type inequalities, we now prove that for any well-defined, real-valued
periodic function 0 < f(x) = f(x +27) < 1

f
1 1 1 2
I(a,c) = o / / / sign[f(¢ — a) — r]sign[f(¢ — c) — 1] dp drdr’, (H.2)
o Jo Jo

cannot be equal to £ cosk(a —c) forallaandcand k=1, 2,....
Substituting ¢ — ¢ + c into Eq. (H.2), and using the periodicity of f(x), we obtain

1 1 1 27
)= o / / / sign[f(¢ — 0) — rlsign [f(¢) — '] d¢ dr dr’, (H.3)
T Jo Jo Jo

where 6 = a—c. Calculating the second derivative of I() with respect to 6 and using d sign(x)/dx =
28(x) twice we find

27
f(¢) (¢> f(p+6) ¢> +9)

=—— do . H.4
il / b (H4)
Substituting the Fourier series f () =2 oo fn€ in¢ in Eq. (H.4), performing the integral over ¢ and

using f_, = f* (because f(x) is real-valued) ylelds

3210
8652 ) _ -8 Z n?(f,|? cosnd . (H.5)
n>0

Eq. (H.5) is equal to 82 coskd = —k?coskd if |fy|> = 1/8 and |f,|* = O for all n # k. Writing

fi = Ifile™ with ¢ a real number, we have f(6) = fo+(1/+/2) cos k(6 + ). By assumption 0 < f(6),
implying that we must have fy > 1/ﬁ. Then f(0) > [1+ cos k(6 + 1//)]/\f2. For & = —1, we have
f(8) > /2 > 1, contradicting the assumption that f(8) < 1. Furthermore, Eq. (H.5) can never be
equal to 892[— cos k#] = +k? cos k& because —8|fi|> can never be equal to one. This completes the
proof.

Consider the case in which we require I(6) = (1/2)cos @ instead of I(6) = cos6. Eq. (H.5) is
equal to (1/2)32[cosf] = —(1/2)cos 6 if |f|* = 1/16 and |f,|*> = O for all n > 1. It follows that
we must have 0 < fy & 1/2 < 1 or fy = 1/2 such that f(6) = [1 + cos(6 + v)]/2. Thus, the model
Eq. (H.1) can produce a correlation

% cos(a—c) = /A(a, @)A(c, ¢)do, (H.6)

but not a correlation with the factor 1/2 removed.
Appendix 1. Local hidden variable models: discrete data
In this, we derive inequalities for LHVMs in the case of discrete data. Adopting the notation used
in Eq. (36), application of the triangle inequality and Eq. (N.5) yields
IC(a, €) — C(a, d) + C(b, ¢) + C(b, d)| < |C(a, c) — C(a, d)| + |C(b, ¢) + C(b, d)|

IJ
Z |A(a, 2)B(c, ) — A(a, A)B(d, )]

+ |A(b, A)B(c, A;) + A(b, A)B(d, 1)) (Vi)
<2, (L1)

showing that the Bell-CHSH inequality also holds for LHVMs defined by the finite sum Eq. (36).

The derivation of model-free inequality Eq. (B.9) did not rely on any assumption about the data
other than that the data are discrete, taking values in the interval [—1, +1]. In contrast, LHVMs
assume that there is a rule that specifies how the value of a data item depends on hidden variables,
collectively denoted by A [43,93]. In the following, we change the notation somewhat to make it is
easier to recognize the relation with the model-free derivation of inequality Eq. (B.9).
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Imagine repeating the EPRB experiment four times with specific combinations (a, c), (a, d), (b, c),
and (b, d). We denote the outcomes for condition x € {a, b, ¢, d} by A(x, A) = +£1 and B(x, 1) = £1
where A plays the role of the hidden variable, taking values in the domain A. In LHVMs, the actual
value of A(x, 1) or B(x, A) depends on both x and on X but, for the purpose of this section, there
is no need to specify this dependence in more detail. Thus, instead of e.g., A1, in Appendix B, in
LHVMs we have A(a, A,). Whereas the n in Ay, is simply a label for the nth data item recorded
under condition 1, A(X, A,,) or B(X, ;) are assumed to be known mathematical functions for all x
and A, A, being the value of A for the nth pair.

In four independent but equally long runs of length N, the EPRB experiment produces the discrete

data A(a, A), etc,, forn =1, ..., N. With these data, we compute the correlations
1 & 1 &
C@,¢) = > A@ Bl 1) Ca.d)= =} A 1;)B(d. 1),
n=1 n=1
1< 1
Cb.o) = & > A, 1)B(c, A7), C(b, d) = N > A(b, x;)B(d, 1)) . (12)
n=1 n=1

The single, double and triple primes indicate that, in principle, the A’s in each of the independent
four runs may be different.

Without any specification of the domain the A’s and without any knowledge about the process
that generates them, each of the correlations in Eq. (1.2) can take the value £1 independent of the
values taken by the others, yielding the trivial bounds

|C(a, €) — C(a,d) + C(b, ¢) + C(b, d)| < |C(a, c)— C(a,d)| + |C(b,c)+ C(b,d)| < 4. (1.3)

Assume that, for whatever reason, {A, | n = 1,...,N} = {x, | n=1,...,N} = {A, | n =
1,...,N}={x; | n=1,...,N}. Then, it is possible to rearrange the terms in the sums in Eq. (1.2)
such that for each n, the A’s and B’s appearing in Eq. (I.2) form a quadruple, that is A = 1. From
Eq. (B.9) it then follows that

|C(a, c) — C(a,d) + C(b, ¢) + C(b,d)| < |C(a,c) — C(a,d)| + |C(b, ¢) + C(b,d)| < 2, (1.4)

which takes the form of the Bell-CHSH inequality Eq. (E.5).

We now ask ourselves if it is possible to “interpolate” between the case of total absence of
knowledge about the A’s, yielding inequality Eq. (I.3), and the special case that led to the Bell-CHSH
inequality Eq. (1.4). To derive a useful inequality, we do not need to specify the domain of the A’s,
(they may represent e.g., different animals) but we assume that the number of different A’s is finite.
In symbols L € A = {11, ..., Ag}. At this stage, we make no assumption about which A’s of the set
A appear in a particular run.

As the number of different A’s is assumed to be finite, the sums in Eq. (I.2) may contain terms
such that A, = A/, = A7, = A7,. We denote the largest set of quadruples for which the latter
condition is satisfied by Q = {(n,n’,n",n") Ay = A}, = A7, = Ap, 5 n,n',n",n" € {1,...,N}},
whereby it is implicitly understood that different quadruples (n, n’, n”, n”") of Q differ in all four
elements n, n’, n” and n”’. Note that the number of elements in the set Q is a lower bound to the
maximum number of quadruples one can find by considering the values of the A’s and B’s instead
of the values of the A's.

At this point, the problem of deriving an upper bound to |C(a, ¢) — C(a, d)|+|C(b, ¢) + C(b, d)|
is identical to the one solved in Appendix B, Therefore, we have

|C(a, ¢) — C(a,d) + C(b, c) + C(b,d)| < |C(a,c) — C(a,d)| + |C(b,c)+ C(b,d)] <4 —24’,
(1.5)

where in this case, 0 < A’ < A < 1 quantifies the fraction of times the same A’s appear

simultaneously in the four data sets used to compute C(a, c), C(a, d), C(b, ¢), and C(b, d).
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L1. Illustration I

As a concrete realization of an LHVM, assume that there is a fixed rule R, an “equation of motion”
that, given the current value of 1, yields the value of the next A. For instance

A1 =ROw), n=1,2,.... (16)

We further require that the process Ay — A, — ... is periodic with period K. Symbolically,
R(L) = A for any A € A.

If K < N we may write N = mK +r where m > 1and 0 < r < K. In other words, the
number of quadruples with the same A’s is at least equal to mK and 4 —2A’ =2 +2(1 - A') <
24+ 2(N —mK)/N = 2 + 2r/N. Therefore, from Eq. (I.5)

|C(a, c) — C(a,d) + C(b,c)+ C(b,d)| < |C(a,c) — C(a,d)| + |C(b,c)+ C(b,d)| <2+ %r .

(1.7)

Obviously, if K — N, then m — 1 and r/N — 0 or if K is independent of N and N — oo, Eq. (1.7)
reduces to the Bell-CHSH inequality |C(a, ¢) — C(a, d) + C(b, ¢) + C(b, d)| < 2. If K > N, we have
to determine A’ by computation and use Eq. (1.5).

1.2. Illustration II

We consider four independent but equally long runs of length N and assume a from an
experimental viewpoint, more “realistic” scenario in which the order in which the K different values
of L. € A = {Aq,..., A} appear is unpredictable. As the number K of different A’s is finite, the
correlations Eq. (I.2) can be written as

Zn a, M)B(c, Ay), C(a, d) = an)A(a AB(d, Ag), (1.8a)
k 1
C(b, c) Zn A(b, 2)B(c, Ay), C Zn A(b, 2)B(d, Ay), (1.8b)

where 0 < n{") < N, constrained by "5, n{") = N, is the number of times ., appears in the sum
of the A(a, A )B( ) terms, and the same for nf) etc.
() ,3) (4

For each value of k in Eq. (1.8), we introduce the symbol Ny = mm(nk .m0, n’, ) and we
have

|C(a, ¢) — C(a,d)+ C(b, c)+ C(b,d)| < |C(a, c) — C(a, d)| + |C(b, c) + C(b, d)|
K

§LN

k=1

+ ’A(b, M)[Be, A) + B(d, Ak)]‘

B(c, Ax) — B(d, )»k)]‘

(" — NA(@, M)B(C, Ay)

(nﬁf) NiA(a, A)B(d, &)

+ (nk — Ni)A(b, Ai)B(c, Ak)
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+ (Y — Np)A(b, A0)B(d, Ay)

S DN (LI IR

i = Nel + I = Nil)

—2 ZNk+ Z( all _

—H’l;cz) — N+ le — N+ nk — Nk>

K K
1 1 "
= Zﬁ kg_] N, +4 (] — N ké_l Nk) =4-2A", (19)

which has the same form as Eq. (B.9), except that in this particular case 0 < A” = N~! Zf:]
mm(nf), nf), nf) (4)) <A<

Let us consider the simple model for which the probability to select k € {1, ..., K} is 1/K. Then,
for sufficiently large N, ngj ~ n;z) ~ n§3) ~ n, ~ N/K implying that A” < 1. In other words,
|C(a, c) — C(a, d)|+ |Cgb, c) + C(b, d)| < 24¢€ where € is a small number that reﬂects the statistical

fluctuations in ni ), n’, ngf), and nf). Note that if K > N, A” =~ 0 and Eq. (1.9) reduces to Eq. (I.3).

Appendix ]J. Proof of Lemma I

Lemma L. Given four, pair-wise compatible, nonnegative, normalized bivariates f(x1, x3]a, c), f(x1,
x4la, d), f(x2, x3|b, €), and f(x2, x4|b, ¢) with moments Ky, K3, K3, Ky, K13, K14, Ka3, and Ky4 satisfying
the Bell-CHSH inequalities |K13 F K14| + |K23 £ Ko4| < 2, there exists a number « satisfying

— 1< =1+ max(|Ki3 + Kual, [Ka3 + Kaal, [K3 + K4|) < o < 1 — max(|Ki3 — Ky,
Koz — Koal, K3 — K4) < 1. (J.1)

Proof. From Eq. (J.1), it follows that in order to prove the existence of (a range of) «, the following
inequalities must hold

=1+ [Ki3 +Kig| < 1—[Ki3 —Kygl, (J.2a)
=1+ |Ki3 +Kia| < 1—[Kaz — Koy, (J.2b)
—1+ K3+ Kia| = 1—1[K3 — Ky, (J.2¢)
=1+ |K3 +Kag| < 1—[Ki3 — Ky, (J.2d)
=1+ [Ko3 + Kag| < 1—|Kaz3 — Kaal, (J.2e)
=1+ K3 +Kpa| < 1— Kz — Ky, (J.2f)
=1+ |K3 + K4 < 1— |Ky3 — Kual, (J.2g)
=1+ K3 +Ky| < 1— 1Kz — Kaal, (J.2h)
=14+ K3 +Kal < 1—[K3—Kq|. (J.2i)

Recall that all the moments that appear in Eq. (J.2) do not exceed one on absolute value. Then
Egs. (J.2a), (J.2e), and (].2i) follow directly from the basic inequality |x+y| + [x —y| < 1 —Xxy +
1+ xy < 2 (see Appendix N). Eq. (J.2¢c) follows from |[K3 — K4 = |K3 Ky — (K4 £Kq)| <
K3 £ Kq| + |[Ky £ Kq] < 2 £ (Ki3 4+ K14) < 2 — |Ky3 + Ky4]. Replacing subscript 1 by 2, we prove
Eq. (J.2f). In the same way, we can prove Eqgs. (].2g) and (J.2h). Finally, the assumption that Bell-CHSH
inequalities Eq. (54) hold is just rewriting Eqs. (J.2b) and (].2d).

Lemma I shows that we may use any choice of & bounded as in Eq. (].1) to assign a value to K3g.
By construction and appeal to Eq. (N.6), K, K3, K4, K13, K14, and K34 can be shown to satisfy all the
inequalities Eqs. (48a)-(48c) and so do K3, K3, K4, K33, K24, and K34 (with subscript 1 replaced by 2).
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Fig. K.12. Transpiled versions of the circuits used to generate the raw data used to compute the data shown in Table 1.
(a): (a, b) = (45, 0); (b): (a, b) = (135, 0); (c): (a, b) = (45, 90); (d): (a, b) = (135, 90).

Appendix K. Transpiled circuits of the EPRB quantum computer experiment

Fig. K.12 shows the transpiled circuits used to compute the four contributions to the Bell-CHSH
function Scysy, see Table 1.

Appendix L. How to obtain the correlation C(a,c) = —a-c

As Bell’s theorem is mathematically sound, there is no way to obtain the correlation C(a, ¢) =
—a - ¢ if one sticks to the conditions under which the theorem has been proven [43]. Thus, one
way to obtain the correlation while retaining the factorized form of Eq. (35) is to discard one or
more of the conditions under which the theorem has been proven. Another alternative is to forget
altogether about Eq. (35) because as explained in Section 11.5, Eq. (35) may be too primitive to
capture the way the experimental data is collected and processed.

In this section, we keep the mathematics as simple as possible by focusing on models for EPRB
experiments with polarized light. Then a = (cosa, sina, 0), ¢ = (cosc, sinc, 0), Malus’ law reads
P(x|a, ) = [1 + xcos2(¢ — a)]/2, and the quantum-theoretical result of the correlation of two
photons with their polarizations in the singlet state reads

C(a,c) = —cos2(a — c), (L.1)

the extra factor two stemming from the fact that we are not considering spin-1/2 objects but photon
polarizations, see Section 7.1. Repeating the calculations with 3D vectors is a little more tedious but
straightforward.

An NQM model for the EPRB experiment is considered to be physically relevant if (1) in the case
of photons, the model also complies with Malus’ law, or (2) in the case of spin-1/2 objects, the
model yields P(x|a, S) = (1 + xa - S)/2. We first review NQMs that fail to and then present NQMs
that succeed to yield the correlation C(a, ¢) = — cos2(a — c).

L.1. Bell’s toy model

In Bell's toy model, the correlation is given by Eq. (35) with
+1 if 0<2—a)<m/2

A(a,A) = —B(a, A) =sign[cos2(A —a)]=43 —1 if wn/2<2(A—a)<3m/2 , (L2)

+1 if 37w/2<2(A—a)<2m
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where 0 < 2(A — a) < 27 and A denotes the polarization of the light beam. Model Eq. (L.2) is in
blatant contradiction with Malus’ law which predicts a sinusoidal dependence as a function of A —a
but has the virtue that the correlation Eq. (35) has some interesting features.

With the explicit form Eq. (L.2) and p(A) = 1/2m, the integral in Eq. (35) can be carried out
analytically, yielding [43]

2
C(a,c) = /A(a, MB(c, A)u(r)dr = —1 4+ — arccos (cos 2(a — ¢)) . (L.3)
b4
For —7 /2 < (a — c¢) < 7 /2, the correlation C(a, ¢) = —1 + 4|a — c|/x. Furthermore, for any a = c,
we have C(a, ¢) = —1 implying that is there is perfect anticorrelation, independent of the choice
of a =c.

In Eq. (L.3), the integration over A with weight ©(A) can, but does not have to, be interpreted as
the integration over the realizations of the random variable A with probability density w(1). If we
adopt this view, then the individual values of A(a, ) will be random, either +1 or —1. Nevertheless,
in Bell's model, the +1 events observed at the two sides are completely correlated if a = b. Thus,
in this probabilistic version of Bell’s toy model, if a = ¢ (arbitrary) knowing the value of say A(a, 1),
we can predict with certainty that the value of B(c, A) will be the opposite of A(a, 1), even though
the values of the A’s are random themselves. It is this feature of the correlation —a - ¢ which is
commonly referred to in popular accounts of the EPRB experiment.

L.2. Bell’s modified toy model: Malus’ law

As mentioned in Appendix L.1, the model defined by Eq. (L.2) does not comply with Malus’ law.
However, fixing this only requires the simple modification

A, ¢, 1) =sign[1+cos2(¢ —a)—2r], B(c, ¢, r") = —sign [1 +cos2(¢p —c) — 2r/] ,
(L.4)

where 0 < ¢ < 27 denotes the polarization of the light beam and 0 < r, v’ < 1 are uniform random
variables. From Eq. (L.4), it follows immediately that the probability density to find A(a, ¢, 1) = +1
is given by cos?(¢ — a), in agreement with Malus’ law.

With the explicit form Eq. (L.4) and u(¢) = 1/2m, the integral in Eq. (35) can be carried out
analytically, yielding

2 1 1
C(a,c)= %f d¢ f dr / dr'Aa, ¢, r)B(c, ¢, 1) = —% cos2(a—rc). (L5)
0 0 0

It is important to note that, as already indicated by Eq. (L.4), there are two different random variables
r and r’ at play. Thus, in Bell’s language one might be tempted to write A = {¢, r, r’}. However,
then it is difficult to imagine how the station measuring A(a, ¢, r) can know that it should use
the r-part of A whereas the station measuring B(a, ¢, r’) should use the r’-part of .. We might
try to avoid this conflict by assuming that r = r’ but then C(a, ¢) = —1 for all a and ¢, which is
unacceptable.

Thus, it is not obvious that Bell's A is sufficiently general to include the simple variant Eq. (L.4)
of Bell’s toy model. However, Bell also showed that his theorem holds true if we replace A(a, )
and B(c, 1) by A(c, A) and B(c, A) obtained by averaging with respect to “distributions of instru-
ment variables” [93,96]. In Eq. (L.4), r and r’ play the role of these instrument variables. In
summary, model Eq. (L.4) satisfies the conditions for proving Bell’s theorem, as confirmed by
Eq. (L.5).

The factor 1/2 that appears in front of the cosine in Eq. (L.5) is a common feature of factorable
models (such as the one discussed in Appendix L.3) that comply with Malus’ law. In essence,
recovering the quantum-theoretical results C(a, ¢) = — cos 2(a—c) amounts to constructing models
that change 1/2 into 1.
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L.3. Classical electrodynamics

According to empirical evidence, the intensity of light passing through a polarizer is given by
Malus’ law
1+ xcos2(¢p —a)

I(xla, ¢. Io(6)) = Io(t) ————— (L6)

where x = +1 labels the directions of the outgoing light, ¢ and a represent the polarization of the
incoming light and orientation of the polarizer, respectively. The total intensity of light impinging on
the polarizer is Iy(t) which is assumed to fluctuate with time. In this section, {(f(t)) = T~! fOTf(t) dt
denotes the time average of a function f(t) over the time of observation T.

As usual, it is expedient to work with dimensionless variables. To this end, we divide both sides
of Eq. (L.6) by the time-averaged intensity and obtain

I(xla, ¢, r(t))  Io(t) 1+xcos2(p—a) r(t)l + x cos2(¢ —a)
(Io(t)) (Io(t)) 2 2

where r(t) = Ip(t)/{Io) > 0 is a dimensionless random variable with time average (r(t)) = 1. By
construction we have

(I(xla, ¢, r(t)))  1+x cos2(¢p —a)
(o) 2
which is the dimensionless form of Malus’ law, as expected.

For simplicity, we assume that the left and right going light beams in the EPRB setup have exactly
the same intensity at any time and that their polarizations differ by ¢y, which is fixed in time. Then,
the expression of the time-averaged correlation of the two normalized intensities reads

(I(x, yIa, € ¢, ¢o)) 1+xcos2(¢p—a) 1+ cos2(¢p — ¢ + o)
) : (L9)
(lo) 2 2
Next, we imagine that we collect data for Eq. (L.9) by repeating the experiments for many values
of the polarization 0 < ¢ < . Integrating over all polarizations with uniform density 1/, the
correlated intensity is found to be

, (L7)

: (L8)

1 (" (I(x,yla,c, ¢, do) 2+xycos2(a—c+
I(x.yla. ¢, o) = - / (0o Y12, € 6 90 oy iy 2H2Y % o)
T Jo (Io) 3
Thus, this classical, Maxwell-theory model yields for the correlation
2
t
C(a,c) = Z xyl(x,yla, c, ¢o) = fr ; ) cos2(a—c+ ¢g) . (L.11)

x,y==+1

A very simple model for the fluctuating intensity can be constructed as follows. We start from

1 /Trk(t)dt ~ lNZ_:lr"(nT/N) = (r*)y (L.12)
T Jo N — ' '
and assume that r(nT/N) is a random variable with the probability density p(r(nT/N)) =
exp(—r(nT/N)) foreachn =0,...,N — 1. It is easy to check numerically that for each realization
of the set of variables {r(0), r(T/N),...,r((N — 1)T/N)}, we have (r(t))y — 1 and (r?(t))y — 2
as N — oo. Of course, the same result is obtained by replacing r*(nT/N) by its average. Thus, this
simple model yields (r?(t)) = 2 and therefore the correlation Eq. (L.11) becomes

C(a,c)= Z xyl(x,yla, ¢, ¢g) = cos2(a — ¢ + ¢) . (L.13)
x,y==+1

If o = 7 /2, Eq. (L.13) agrees with the desired quantum-theoretical expression — cos2(a — c) for
the correlation of two photons with their polarizations described by the singlet state.
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A key difference between the classical wave mechanical model and quantum theory of spin-1/2
objects is that in the latter, the results of quantum measurements, an abstract theoretical concept,
are discrete, either +1 or —1 whereas in the former, the intensity can, in principle, take all possible
non-negative real values. Of course, the light intensity measured in real experiments takes discrete
values (the resolution of any measurement device being finite) but the fact remains that these
discrete values are not bound to the interval [0, 1].

In conclusion, the local realistic, classical wave mechanical model based on Eqgs. (L.6) and (L.9)

1. complies with Malus’ law and can yield the desired correlation C(a, ¢) = — cos2(a — c) for
two light beams with opposite but otherwise random polarization,

2. does not satisfy the conditions necessary to prove Bell’s theorem because 0 < r(t) can exceed
one, implying that the conditions A(x|a, A) < 1 and B(x|c, A) < 1 in Eq. (35) are not satisfied.

L4. A system of two classical spins

We start from the representation S; = Sj(cos ¢; sin8;, sin¢; sin6;, cos ;)" for j = 1,2, of the
classical spins and introduce the unit vectors a; = (coso; sin ;, sin ¢ sin g, cos Bj)T forj=1,2to
specify two directions. We assume that the length of the spins S; > 0 is distributed according to a
yet unspecified (probability) density p(S1, S>).

We consider a pair of spins that is perfectly anticorrelated, that is S; = —S8,, implying that
$51=5,=S5,600 =0, + 71 =0, 1 = ¢ = ¢. We assume that the vectors representing pairs of the
same length S uniformly cover the 3D sphere of radius S. With these assumptions, the (probability)
density for all pairs reads p(S;,S;) = p($1)8(S1 +S3) = S?u(S)sin@ (S + S,), where the function
1(S) > 0 is to be determined later.

Expressing the requirement that the density p(Sq, S;) is normalized to one yields

2
/// S% u(S) sin® dS do dp = /52 (S)ds =1, (L.14)

which is a first constraint on candidates for the nonnegative function w(S). For the single-spin
averages we have

1 [ee] 2
(@i - S;) = 4—/ / / $3 u(S) sin 6 dS db d¢p [cos(¢p — «;) sin O sin Bj + cos 6 cos Bi] = 0,
4 o Jo
i=1,2, (L.15)
independent of the choice of wu(S). For the correlation, we have

(a1-S1a-8) = —(a;-S1 a3 -

27
= / / / S% 1u(S) sin 6 dS do d¢

{52 [cos(¢p — a1)sin @ sin By + cos O cos B1]

[cos(¢ — a3)sin B sin B, + cos O cos ﬂz]}

2
= f/f Stu d5d9d¢{ [ cos(2¢ — a1 — a2)

+ cos(ar; — a2) | sin 6 sin By sin B,

+sin 6 cos? @ cos B cos B, }

63



H. De Raedt, M.I. Katsnelson, M.S. Jattana et al. Annals of Physics 453 (2023) 169314

1 [ T 1
= / s4 /L(S)dS/ do [ 3 cos(a; — o) sin® @ sin By sin B,
0 0

+ sin 6 cos® 6 cos B1 cos B :| ) (L.16)
Using [, sin’6d6 = 4/3 and [ sin6 cos? 6 do = 2/3 we find

l o0
(@a;-S1a,-$) = —gf s4 u(S)dS[cos(al — o) sin By sin B, + cos B cos ﬁz]
0

a;-a, [
== / S* u(S)ds . (L17)
3 Jo
We recover the quantum-theoretical result flz(al, a) = (a1 - 01 a3 - 03) = —a; - a, if we choose

the density n(S) such that Eq. (L.14) holds and that
o0
/ S* u(S)ds = 3, (L.18)
0

which is always possible. For instance, if we choose u(S) = 4 exp(—2S), we have fooo S?u(S)ds =1
and fooo S*u(S)dS = 3. There are many other solutions to Egs. (L.14) and (L.18), for instance
w(S)=1(1/3)5(S — 1)+ (1/6)5(S — 2), a very simple one.

As in the classical electrodynamics model discussed in Appendix L.3, the result Eq. (L.17) together
with fooc S*u(S)dS = 3 does not contradict Bell’s theorem because the latter involves functions
|A(a, A)| < 1and |B(b, 1)| < 1 whereas Eq. (L.17) is obtained by computing the correlation between
two 3D vectors of lengths exceeding one.

To mimic a product state, we assume that p(Sq, S;) = §(S; — M;)8(S; — My) where M; and M,
are 3D vectors which are considered to be fixed. Then we have

(ar-81) = ar - My, (L.19a)
(a2 -Sz) = ap - My, (L.19b)
(a1-$122-Sy) = a;-M; a; - My, (L.19¢)

in full agreement with the quantum-theoretical result Eq. (M.6) below.

In summary: we can recover the averages and the correlation —ay - a, of the singlet and product
state by replacing the “quantum spins” by 3D vectors of variable length and making an appropriate
choice of the density p(S1, S3).

Appendix M. Standard quantum theory of the EPRB experiment

We briefly review the standard quantum-theoretical description of the EPRB experiment. Recall
that a basic premise of such a description is that the state of the quantum system, represented by
the density matrix p, does not depend on the kind of measurements that are carried out [6,24].

M.1. Singlet state

If the statistics of repeated experiments with pairs of spin-1/2 objects are captured by the singlet
state defined by the density matrix

Cd—oron (M) =D (= (1
=" ‘( N )( N > (M-

the probability for observing the outcomes x,y = +1 when the first spin is measured along the
direction a and the second one is measured along the direction c is given by

1+x01-al+yoy-c  1—Xxya-c
2 2 - 4
64
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from which it immediately follows that

f:‘](a, c)= Z xP(x,yla,c) =0, Ez(a c) Z yP(x,yla,c) =0, Elz(a c)
x,y=%1 x,y==1
= Y xyPxyla.c)=-a-c (M.3)
x,y==+1

in agreement with Eq. (29).

M.2. Product state

If the density matrix of a two-particle system can be written as p = p; ® p,, the system is said
to be described by a product state [6]. Here p; is the density matrix of particle i = 1, 2. For two
spin-1/2 objects described by a product state we have Elz(a b) = E](a b)Ez(a b) and the correlation
En(a b) — E1(a h)Ez(a b) = 0. Therefore the quantum state p = p; ® p, is called uncorrelated.

For two spin-1/2 objects, the product state takes the generic form

_]+0’1-M11+0’2-M
- 2 2
where M; and M, are 3D vectors with a length less than or equal to one. If |M;| = |[M;| = 1, the

product state Eq. (M.4) is said to be pure, otherwise it is said to be mixed [6].
From Eq. (M.4) it follows that
1+x01~a1+y02-c l—l—xa-M]l—i—yc-Mz

P(x,yla,c)=Tr p > 5 = 3 5 , (M.5)

2 (M.4)

and

-~

Ei(a, ¢) = (01-a) =a-My, Ex(a,¢) = (0,-¢) = ¢-My, Epx(a, €) = (01-a05-¢) =a-M; c-M, .
(M.6)

M.3. Factorability and independence

In general, the probability of two dichotomic variables taking values +1 and —1 can be written
as

1+XE((Z)+yExZ)+xyEa(Z)

P(x,y1Z) =

V4 xE(D) 14+ YEAZ)  EnZ)— E2)Ex2)
3 +Xxy

4
P(X|Z)P(|Z) + Xy E2(Z) — E«(Z) Ex(Z)

2 )

(M.7)

where Z stands for a collection of conditions.

By definition, if P(x,y|Z) = P(x|Z)P(y|Z) the variables x and y are (logically/statistically)
independent [4]. If the variables x and y are (logically/statistically) independent it immediately
follows from Eq. (M.7) that their correlation E1(Z) — E{(Z)E(Z) = 0

In general, zero correlation does not imply independence [4]. However, from Eq. (M.7) it also
follows that P(x, y|Z) = P(x|Z)P(y|Z) if the correlation E13(Z) — E{(Z)E»(Z) = O.

In summary, the dichotomic variables x = £1 and y £ 1 are (logically/statistically) independent
if and only if their correlation E1,(Z) — E1(Z)E;(Z) = 0. This is a special property of a probability
distribution of dichotomic variables.

In contrast, in quantum theory we can have zero correlation even though the density matrix
does not factorize. For example, the density matrix Eq. (M.1) cannot be factorized (p # p; ® p;)
yet the correlation Ej»(a, ¢) — Eq(a, ¢)Ex(a, ¢) = Ejz(a, €) = —a - ¢ is zero if the vectors a and ¢ are
orthogonal.
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M.4. Extension of Bell’s theorem to quantum-theoretical models

In this subsection, we generalize Bell’s theorem to the realm of quantum-theoretical models.
As nothing is gained by limiting the discussion to spin-1/2 systems we prove the theorem in full
generality. We consider a composite quantum system that consists of two identical subsystems
i = 1, 2. The state of subsystem i is represented by the density matrix p;(1). The variable X is an
element of a set that does not need to be defined in detail and plays exactly the same role as in
Bell’s theorem. We define a matrix p of the composite system by

p= / 21 (1)py (M)A, (M.8)

where w(A) is a probability density, that is a nonnegative function, which satisfies f u(A)dr =1
(compare with Eq. (35)). Using the properties of the trace Tr , Tr p(1)p,(1) = [Tr 14(1)] [Tr 20,(1)]
= 1 and the fact that a sum of nonnegative definite matrices with positive weights is a nonnegative
definite matrix [128], it follows that Eq. (M.8) is a proper density matrix for the system consisting
of subsystems one and two. Density matrices p of the form Eq. (M.8) are called separable. A product
state is a special case of a separable state. In general, a separable state, being a sum (integral) of
uncorrelated states, is correlated.

To avoid mathematical technicalities, in the following we only consider quantum systems
represented by finite-dimensional Hilbert spaces. Consider two observables of each subsystem,
represented by the matrices A;, By, C; and D,, respectively. The entries of these matrices are
assumed to have been rescaled such that all the eigenvalues of these four matrices lie in the interval
[—1, 1] (the equivalent of the conditions on A(a, A) and B(b, A) in Eq. (35)). From the definition of
the quantum-theoretical expectation (X;),, = Tr ;p;(A)X;, it follows that for any A, [(A1).] < 1,
[(B2)x] < 1, [{C1)2] < 1, and [(D2),] < 1.

The correlation between observables of the two subsystems is defined by

Q(A1. G) = (A1G) =Tr pAC; = / [Tr o, (WAL [Tr p,(A)C2] w(1)dA = / (A1);.(C2)ap(X)d2
(M.9)

The correlations Q(Aq, D), Q(B1, C;) and Q(B, D,) are defined similarly.

__ Suppose that the two-spin system is described by the singlet state. Then we have Q(A, C;) =
Ep(a,c) = —a-¢ Q(A;,Dy) = Epp(a,d) = —a-d, Q(B;,G) = Epp(b,c) = —b-¢ and
Q(By,D;) = Ej3(b, d) = —b - d. Making use of the Cauchy-Schwarz inequality and recalling that a,
b, ¢ and d are unit vectors, we find

[E(a, ©) — Era(a, d) + Ena(b, ©) + Era(b, d)|* = - (¢ — d) + b - (c + d)]?
<la-(c—dP +b-(c+ )
+2]a:(c—d) |b-(c+d)
< lall* lle — d|I* + [Ibj* flc + d|)”
+2V/l1all? llc — d|1? [Ib]? flc + d|?
<8, (M.10)

where we also used [|c—d||?+]|c+d|? = ¢?+d? = 2 and | c—d|]? [c+d|?> = (c®+d?)*—4(c-d*)? < 4
Therefore, for the singlet state we have [98]

[Eia(a, €) — Enx(a, d) + Epa(b, €) + Epp(b, d)| < 2v/2. (M.11)

There exists a choice for a, b, ¢ and d for which equality in Eq. (M.11) can be reached. To show
this it is sufficient to consider four vectors that lie in the x-y plane. Let us write a = (cos g, sina, 0),
etc. For the singlet state, we have Ej(a, c) —cos(a — c), E;p(a,d) = —cos(a — d), Eqz(b, ¢) =
—cos(b — ¢), and Eu(b d) = —cos(b — d). Then take ¢ = 0, b = /2, c = w/4 and d = 37 /4 to
find E1»(a, €) — Eqp(a, d) + Eqa(b, c)+512 b d)=-22.
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On the other hand, using the triangle inequality and Eq. (N.5) we obtain
|Q(A1, C2) — Q(A1, D2)+Q(By, ;) — Q(By, D2)|
= ‘/[(Al>k(c2)k — (A1) (D2); + (B1)x(Ca)s + (B1)x(D2); ] u(A)dA

< / |(A1)1(C2)s. — (A1)3.(D2)s + (B1):.(Ca)s + (B1); (D2 | w(2)dA
< 2/M(x)dx —2. (M.12)

In summary, the correlation Elz(a, b) = (01 -a 03 - b) of two spin-1/2 objects in the singlet state
satisfies the bound Eq. (M.11) [98] but may violate the bound Eq. (M.12). The only conclusion one
can draw from violation of the bound Eq. (M.12) is that there does not exist a separable density
matrix that yields E1»(a, ¢) = —a-c for all a and c. From a violation Eq. (M.12), it would be a logical
fallacy to draw any other conclusion than the one just mentioned simply because the derivation of
Eq. (M.12) pertains to quantum theory only.

Appendix N. Basic inequalities

For any pair of real numbers u and v, the triangle inequality
lu+ vl < |ul + v, (N.1)
and the identity
(wtv?+1—-u?)1-v))=1+uw), (N.2)

hold.
In this section, the symbols w, x, y, and z represent real numbers in the range [—1, 1]. Applying
Eq. (N.2) with u = x and v = y, the second term in Eq. (N.2) is nonnegative such that

(x+yy < (1£xy), (N3)
or, equivalently,
XLty <1xxy. (N.4)
Using Egs. (N.1) and (N.4) we obtain
Xy £xz| = x| yL+z]| <1xyz, (N.5a)
|xz — xw 4+ yz + yw| < |xz — xw| + |yz + yw|
<kxXlz—wl+lyllz+w <1l—zw+14+zw=2. (N.5b)

The variables appearing in Egs. (N.5a) and (N.5b) form the triple (x,y,z) and the quadruple
(x,, z, w), respectively. The triple/quadruple structure is essential to prove Eq. (N.5). For instance,
an expression of the form |xz — xw| + |yz + yw’| can be larger than 2 (e.g, (x,y,z, w,w’) =
(1,1, 1, —1, 1) yields |xz — xw| + |yz + yw'| = 4).

Next, we prove that for any triple of real numbers a, b, and c,

laxb<1£c < |axc|<1xb < |b*xc|<1za. (N.6)
Written more explicitly, the inequalities [a = b| < 14+ cread —1Fc <a+b < 1+ c from which

—-14+c<a-b<1l-c¢c = a+c<1+band —1+b<a-c,
—1—-c<a+b<l1l+c = —1-b<a+c and a—c<1-b, (N.7)

or, written more compactly, |a & c| < 14b. In the same manner, we can prove that |b £ c¢| < 1+a.
Attaching subscripts to the x’s, y's, etc., and denoting the correlation of x’s and y’s by

1 N
o) =5 > xwi, (N.8)
i=1
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etc., repeated use of Eqs. (N.1) and (N.5) yields

I(xy) £ (xz)| < 1= (yz), (N.9a)
[(xz) — (xw) + (yz) + (yw)| = |(xz) — (xw)| + [(yz) + Yw)| < 2, (N.9b)

In exactly the same manner, one proves that |(xz) + (xw)| + |[(yw) — (yz)| < 2, [(xz) + (xw)| +
l(yz) — yw)| < 2, and [{(xw) + (yz)| + |(yw) — (xz)| < 2.

N.1. Application: discrete data

Inequalities Eqs. (N.9) can be used to detect inconsistencies between the data and their correla-
tions [129]. Suppose that we are given a set of discrete data Q3 = {(x;,yi,z) |i=1,...,n; X =
+1,y; = £1, z; = £1}, consisting of triples (x;, y;, z;). Also suppose that (xy) = 0.7 and (xz) = —0.7.
Then inequality Eq. (N.9a) puts a constraint on the values that (yz) may take, namely (yz) <
1-14=-04.

Conversely, assume that we are given three numbers « = 0.7, 8 = —0.7 and e.g., y = 0.4. Does
there exist a set Qs of triples of discrete data such that (xy) = @ and (xz) = 8 and (yz) = y ? The
answer is no for if there was, the value of y would be in conflict with the constraint (yz) < —0.4.

For a collection of two-valued quadruples Q4 = {(x;,yi,zi, wi) |i=1,...,n; x; = £1,y; =
+1,z = £1, w; = £1} we can, in addition to Eq. (N.9a), use Egs. (N.9) to find constraints on the
pairwise correlations.

In summary, if the averages (xy), (xz), and (yz) violate at least one of the inequalities Eq. (N.9a)
these averages cannot have been computed from the data set consisting of triples. Similarly, if
the averages (xz), (xw), (yz), and (yw) violate at least one of the inequalities Egs. (N.9) these
averages cannot have been computed from the data set consisting of quadruples. To the best of our
knowledge, the inequality Eq. (N.9a) was (in a different but equivalent form) first given by Boole,
who called it a condition of possible experience [129].

N.2. Application: real-valued functions

If we define the correlation of two functions x(1) and y()) by

() = f XU dh, p(h) = 0, f W) = 1. (N.10)

then the inequalities Egs. (N.9) hold as long as |x(A)| < 1, [y(A)] < 1, |z(A)] < 1, and |w(})| <

Suppose that we are given three functions x(1), y(1) and z()), satisfying |x(1)] < 1, |y(}A) 5
and |z(X)| < 1, and for which (xy) = 1/+/2 and (xz) = —1/+/2. Then inequality Eq. (N.9a) force
(yz) to be in the range (yz) < 1 — /2.

Next assume that we have three unit vectors a, b, ¢, and three functions x(a, 1), y(b, A),
and z(c, 1). Then inequality Eq. (N.9a) rules out that there exist functions x(a, 1), y(b, 1), z(c, A),
satisfying |x(a, )| < 1, |y(b, A)| < 1, |z(c, A)| < 1 such that (x(a)y(b)) = a - b, (x(a)z(c)) = a-c,
and (y(b)z(c)) = b-c. Indeed, if we take a = (1,0,0), b = (1, 1, 0)/xf2, c=(-1,1, O)/ﬁ, and use
[(xy) £ (xz)| < 1= (yz), we obtain /2 < 1 which contradicts elementary arithmetic. In essence, a
similar argument was used by Bell to prove his theorem (see Section 11.1).
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