000010085 001__ 10085
000010085 005__ 20240708132722.0
000010085 0247_ $$2DOI$$a10.1016/j.memsci.2010.02.002
000010085 0247_ $$2WOS$$aWOS:000279953300012
000010085 037__ $$aPreJuSER-10085
000010085 041__ $$aeng
000010085 082__ $$a570
000010085 084__ $$2WoS$$aEngineering, Chemical
000010085 084__ $$2WoS$$aPolymer Science
000010085 1001_ $$0P:(DE-Juel1)129587$$aBaumann, S.$$b0$$uFZJ
000010085 245__ $$aInfluence of sintering conditions on microstructure and oxygen permeation of Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta) (BSCF) oxygen transport membranes
000010085 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2010
000010085 300__ $$a102 - 109
000010085 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010085 3367_ $$2DataCite$$aOutput Types/Journal article
000010085 3367_ $$00$$2EndNote$$aJournal Article
000010085 3367_ $$2BibTeX$$aARTICLE
000010085 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010085 3367_ $$2DRIVER$$aarticle
000010085 440_0 $$03536$$aJournal of Membrane Science$$v359$$x0376-7388
000010085 500__ $$aFinancial support from the Helmholtz Association of German Research Centres (Initiative and Networking Fund) through the Helmholtz Alliance MEM-BRAIN is gratefully acknowledged.
000010085 520__ $$aBa0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) exhibits high oxygen permeability, which is why it is being discussed for gas separation (oxygen transport membrane, OTM) in zero-emission power plants using oxyfuel technology when the membrane is operated in a clean environment, i.e. no flue gas contact. We investigate the influence of membrane processing on microstructure and oxygen permeation. Pure-phase BSCF powder is synthesized using a modified Pechini method. For comparison, commercially available powder is also used, synthesized by a solid-state reaction. Disk-shaped membranes of various microstructures, i.e. closed porosities and grain sizes, are prepared by uniaxial pressing and sintering of the powders processed in different ways. The powders and membranes are characterized by methods including BET, SEM, XRD, and DSC. The microstructures obtained by different sintering conditions are investigated by SEM and TEM. Sintering at 1150 degrees C leads to incongruent melting of BSCF indicated by DSC. The liquid phase appears at three-phase boundaries grain-grain-air and consists of nearly pure cobalt oxide with small impurities of barium and strontium detected by TEM/EDX analysis. Oxygen permeation of the membranes is measured in an air/Ar gradient depending on temperature and membrane microstructure. The closed porosity of different processed membranes is varied between 2 and 15% with uniform grain sizes in the range of approx. 10 mu m. The average grain size is increased from 10 to 45 mu m by increasing the sintering temperature. Neither porosity nor the grain size significantly influences the oxygen permeation rate of 1-mm-thick disks in the investigated parameter range. (C) 2010 Elsevier B.V. All rights reserved.
000010085 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000010085 588__ $$aDataset connected to Web of Science
000010085 650_7 $$2WoSType$$aJ
000010085 65320 $$2Author$$aGas separation
000010085 65320 $$2Author$$aOxygen transport membranes
000010085 65320 $$2Author$$aPerovskites
000010085 65320 $$2Author$$aBSCF
000010085 65320 $$2Author$$aMicrostructure
000010085 65320 $$2Author$$aOxyfuel
000010085 7001_ $$0P:(DE-Juel1)129660$$aSchulze-Küppers, F.$$b1$$uFZJ
000010085 7001_ $$0P:(DE-Juel1)VDB71676$$aRoitsch, S.$$b2$$uFZJ
000010085 7001_ $$0P:(DE-Juel1)VDB2440$$aBetz, M.$$b3$$uFZJ
000010085 7001_ $$0P:(DE-Juel1)VDB92759$$aZwick, M.$$b4$$uFZJ
000010085 7001_ $$0P:(DE-Juel1)VDB92760$$aPfaff, E.M.$$b5$$uFZJ
000010085 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, W. A.$$b6$$uFZJ
000010085 7001_ $$0P:(DE-Juel1)130824$$aMayer, J.$$b7$$uFZJ
000010085 7001_ $$0P:(DE-Juel1)129666$$aStöver, D.$$b8$$uFZJ
000010085 773__ $$0PERI:(DE-600)1491419-0$$a10.1016/j.memsci.2010.02.002$$gVol. 359, p. 102 - 109$$p102 - 109$$q359<102 - 109$$tJournal of membrane science$$v359$$x0376-7388$$y2010
000010085 8567_ $$uhttp://dx.doi.org/10.1016/j.memsci.2010.02.002
000010085 909CO $$ooai:juser.fz-juelich.de:10085$$pVDB
000010085 9131_ $$0G:(DE-Juel1)FUEK402$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000010085 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000010085 9141_ $$y2010
000010085 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010085 9201_ $$0I:(DE-Juel1)VDB809$$d30.09.2010$$gIEF$$kIEF-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000010085 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x1
000010085 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000010085 970__ $$aVDB:(DE-Juel1)120252
000010085 980__ $$aVDB
000010085 980__ $$aConvertedRecord
000010085 980__ $$ajournal
000010085 980__ $$aI:(DE-Juel1)IEK-1-20101013
000010085 980__ $$aI:(DE-82)080011_20140620
000010085 980__ $$aI:(DE-82)080009_20140620
000010085 980__ $$aUNRESTRICTED
000010085 981__ $$aI:(DE-Juel1)IMD-2-20101013
000010085 981__ $$aI:(DE-Juel1)IEK-1-20101013
000010085 981__ $$aI:(DE-Juel1)VDB1047
000010085 981__ $$aI:(DE-Juel1)VDB881