001     10085
005     20240708132722.0
024 7 _ |2 DOI
|a 10.1016/j.memsci.2010.02.002
024 7 _ |2 WOS
|a WOS:000279953300012
037 _ _ |a PreJuSER-10085
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Engineering, Chemical
084 _ _ |2 WoS
|a Polymer Science
100 1 _ |a Baumann, S.
|b 0
|u FZJ
|0 P:(DE-Juel1)129587
245 _ _ |a Influence of sintering conditions on microstructure and oxygen permeation of Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta) (BSCF) oxygen transport membranes
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2010
300 _ _ |a 102 - 109
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Membrane Science
|x 0376-7388
|0 3536
|v 359
500 _ _ |a Financial support from the Helmholtz Association of German Research Centres (Initiative and Networking Fund) through the Helmholtz Alliance MEM-BRAIN is gratefully acknowledged.
520 _ _ |a Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) exhibits high oxygen permeability, which is why it is being discussed for gas separation (oxygen transport membrane, OTM) in zero-emission power plants using oxyfuel technology when the membrane is operated in a clean environment, i.e. no flue gas contact. We investigate the influence of membrane processing on microstructure and oxygen permeation. Pure-phase BSCF powder is synthesized using a modified Pechini method. For comparison, commercially available powder is also used, synthesized by a solid-state reaction. Disk-shaped membranes of various microstructures, i.e. closed porosities and grain sizes, are prepared by uniaxial pressing and sintering of the powders processed in different ways. The powders and membranes are characterized by methods including BET, SEM, XRD, and DSC. The microstructures obtained by different sintering conditions are investigated by SEM and TEM. Sintering at 1150 degrees C leads to incongruent melting of BSCF indicated by DSC. The liquid phase appears at three-phase boundaries grain-grain-air and consists of nearly pure cobalt oxide with small impurities of barium and strontium detected by TEM/EDX analysis. Oxygen permeation of the membranes is measured in an air/Ar gradient depending on temperature and membrane microstructure. The closed porosity of different processed membranes is varied between 2 and 15% with uniform grain sizes in the range of approx. 10 mu m. The average grain size is increased from 10 to 45 mu m by increasing the sintering temperature. Neither porosity nor the grain size significantly influences the oxygen permeation rate of 1-mm-thick disks in the investigated parameter range. (C) 2010 Elsevier B.V. All rights reserved.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Gas separation
653 2 0 |2 Author
|a Oxygen transport membranes
653 2 0 |2 Author
|a Perovskites
653 2 0 |2 Author
|a BSCF
653 2 0 |2 Author
|a Microstructure
653 2 0 |2 Author
|a Oxyfuel
700 1 _ |a Schulze-Küppers, F.
|b 1
|u FZJ
|0 P:(DE-Juel1)129660
700 1 _ |a Roitsch, S.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB71676
700 1 _ |a Betz, M.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB2440
700 1 _ |a Zwick, M.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB92759
700 1 _ |a Pfaff, E.M.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB92760
700 1 _ |a Meulenberg, W. A.
|b 6
|u FZJ
|0 P:(DE-Juel1)129637
700 1 _ |a Mayer, J.
|b 7
|u FZJ
|0 P:(DE-Juel1)130824
700 1 _ |a Stöver, D.
|b 8
|u FZJ
|0 P:(DE-Juel1)129666
773 _ _ |a 10.1016/j.memsci.2010.02.002
|g Vol. 359, p. 102 - 109
|p 102 - 109
|q 359<102 - 109
|0 PERI:(DE-600)1491419-0
|t Journal of membrane science
|v 359
|y 2010
|x 0376-7388
856 7 _ |u http://dx.doi.org/10.1016/j.memsci.2010.02.002
909 C O |o oai:juser.fz-juelich.de:10085
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 30.09.2010
|g IEF
|k IEF-1
|l Werkstoffsynthese und Herstellungsverfahren
|0 I:(DE-Juel1)VDB809
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)120252
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)VDB1047
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21