001008524 001__ 1008524
001008524 005__ 20231027114407.0
001008524 0247_ $$2doi$$a10.1116/6.0002733
001008524 0247_ $$2ISSN$$a2166-2746
001008524 0247_ $$2ISSN$$a0734-211X
001008524 0247_ $$2ISSN$$a1071-1023
001008524 0247_ $$2ISSN$$a1520-8567
001008524 0247_ $$2ISSN$$a2166-2754
001008524 0247_ $$2ISSN$$a2327-9877
001008524 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02364
001008524 0247_ $$2WOS$$aWOS:000993980000002
001008524 037__ $$aFZJ-2023-02364
001008524 041__ $$aEnglish
001008524 082__ $$a530
001008524 1001_ $$0P:(DE-HGF)0$$aRosenzweig, D. S.$$b0$$eCorresponding author
001008524 245__ $$aMorphologic and electronic changes induced by thermally supported hydrogen cleaning of GaAs(110) facets
001008524 260__ $$aNew York, NY$$bAIP Publishing$$c2023
001008524 3367_ $$2DRIVER$$aarticle
001008524 3367_ $$2DataCite$$aOutput Types/Journal article
001008524 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1688383951_3226
001008524 3367_ $$2BibTeX$$aARTICLE
001008524 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008524 3367_ $$00$$2EndNote$$aJournal Article
001008524 520__ $$aHydrogen exposure and annealing at 400 °C leads to a layer-by-layer etching of the n-doped GaAs(110) cleavage surface removing islands and forming preferentially step edge sections with [001] normal vector. In addition, a large density of negatively charged point defects is formed, leading to a Fermi level pinning in the lower part of the bandgap. Their charge transfer level is in line with that of Ga vacancies only, suggesting that adatoms desorb preferentially due to hydrogen bonding and subsequent Ga–H desorption. The results obtained on cleavage surfaces imply that the morphology of nanowire sidewall facets obtained by hydrogen cleaning is that of an etched surface, but not of the initial growth surface. Likewise, the hydrogen-cleaned etched surface does not reveal the intrinsic electronic properties of the initially grown nanowires.
001008524 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001008524 536__ $$0G:(GEPRIS)390247238$$aDFG project 390247238 - III-V Halbleiter Nanodrähte: Korrelation von lokaler elektronischer Struktur, Leitfähigkeit und Ladungsträger Lebensdauer (390247238)$$c390247238$$x1
001008524 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008524 7001_ $$0P:(DE-Juel1)143949$$aSchnedler, M.$$b1
001008524 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, R. E.$$b2
001008524 7001_ $$0P:(DE-Juel1)130627$$aEbert, Ph.$$b3
001008524 7001_ $$0P:(DE-HGF)0$$aEisele, H.$$b4
001008524 773__ $$0PERI:(DE-600)3117331-7$$a10.1116/6.0002733$$gVol. 41, no. 4, p. 044202$$n4$$p044202$$tJournal of vacuum science & technology / B$$v41$$x2166-2746$$y2023
001008524 8564_ $$uhttps://juser.fz-juelich.de/record/1008524/files/044202_1_6.0002733-1.pdf$$yOpenAccess
001008524 8564_ $$uhttps://juser.fz-juelich.de/record/1008524/files/Morphologic_electronic_changes.pdf$$yOpenAccess
001008524 909CO $$ooai:juser.fz-juelich.de:1008524$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001008524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143949$$aForschungszentrum Jülich$$b1$$kFZJ
001008524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b2$$kFZJ
001008524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130627$$aForschungszentrum Jülich$$b3$$kFZJ
001008524 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001008524 9141_ $$y2023
001008524 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008524 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-27$$wger
001008524 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001008524 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001008524 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ VAC SCI TECHNOL B : 2022$$d2023-10-27
001008524 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-27
001008524 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001008524 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001008524 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-27
001008524 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001008524 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001008524 920__ $$lyes
001008524 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
001008524 980__ $$ajournal
001008524 980__ $$aVDB
001008524 980__ $$aUNRESTRICTED
001008524 980__ $$aI:(DE-Juel1)ER-C-1-20170209
001008524 9801_ $$aFullTexts