Hauptseite > Publikationsdatenbank > Morphologic and electronic changes induced by thermally supported hydrogen cleaning of GaAs(110) facets > print |
001 | 1008524 | ||
005 | 20231027114407.0 | ||
024 | 7 | _ | |a 10.1116/6.0002733 |2 doi |
024 | 7 | _ | |a 2166-2746 |2 ISSN |
024 | 7 | _ | |a 0734-211X |2 ISSN |
024 | 7 | _ | |a 1071-1023 |2 ISSN |
024 | 7 | _ | |a 1520-8567 |2 ISSN |
024 | 7 | _ | |a 2166-2754 |2 ISSN |
024 | 7 | _ | |a 2327-9877 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2023-02364 |2 datacite_doi |
024 | 7 | _ | |a WOS:000993980000002 |2 WOS |
037 | _ | _ | |a FZJ-2023-02364 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Rosenzweig, D. S. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Morphologic and electronic changes induced by thermally supported hydrogen cleaning of GaAs(110) facets |
260 | _ | _ | |a New York, NY |c 2023 |b AIP Publishing |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1688383951_3226 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Hydrogen exposure and annealing at 400 °C leads to a layer-by-layer etching of the n-doped GaAs(110) cleavage surface removing islands and forming preferentially step edge sections with [001] normal vector. In addition, a large density of negatively charged point defects is formed, leading to a Fermi level pinning in the lower part of the bandgap. Their charge transfer level is in line with that of Ga vacancies only, suggesting that adatoms desorb preferentially due to hydrogen bonding and subsequent Ga–H desorption. The results obtained on cleavage surfaces imply that the morphology of nanowire sidewall facets obtained by hydrogen cleaning is that of an etched surface, but not of the initial growth surface. Likewise, the hydrogen-cleaned etched surface does not reveal the intrinsic electronic properties of the initially grown nanowires. |
536 | _ | _ | |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535) |0 G:(DE-HGF)POF4-5351 |c POF4-535 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 390247238 - III-V Halbleiter Nanodrähte: Korrelation von lokaler elektronischer Struktur, Leitfähigkeit und Ladungsträger Lebensdauer (390247238) |0 G:(GEPRIS)390247238 |c 390247238 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Schnedler, M. |0 P:(DE-Juel1)143949 |b 1 |
700 | 1 | _ | |a Dunin-Borkowski, R. E. |0 P:(DE-Juel1)144121 |b 2 |
700 | 1 | _ | |a Ebert, Ph. |0 P:(DE-Juel1)130627 |b 3 |
700 | 1 | _ | |a Eisele, H. |0 P:(DE-HGF)0 |b 4 |
773 | _ | _ | |a 10.1116/6.0002733 |g Vol. 41, no. 4, p. 044202 |0 PERI:(DE-600)3117331-7 |n 4 |p 044202 |t Journal of vacuum science & technology / B |v 41 |y 2023 |x 2166-2746 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1008524/files/044202_1_6.0002733-1.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1008524/files/Morphologic_electronic_changes.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:1008524 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)143949 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)144121 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)130627 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5351 |x 0 |
914 | 1 | _ | |y 2023 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2023-10-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J VAC SCI TECHNOL B : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-27 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|