001008529 001__ 1008529
001008529 005__ 20230929112535.0
001008529 0247_ $$2doi$$a10.1002/aelm.202201330
001008529 0247_ $$2Handle$$a2128/34599
001008529 0247_ $$2WOS$$aWOS:000970867900001
001008529 037__ $$aFZJ-2023-02366
001008529 082__ $$a621.3
001008529 1001_ $$0P:(DE-Juel1)128738$$aVitusevich, S.$$b0$$eCorresponding author
001008529 245__ $$aThermometry of AlGaN/GaN 2D Channels at High Electric Fields Using Electrical and Optical Methods
001008529 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH & Co. KG$$c2023
001008529 3367_ $$2DRIVER$$aarticle
001008529 3367_ $$2DataCite$$aOutput Types/Journal article
001008529 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687938904_28150
001008529 3367_ $$2BibTeX$$aARTICLE
001008529 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008529 3367_ $$00$$2EndNote$$aJournal Article
001008529 520__ $$aThe active channels in AlGaN/GaN-based heterostructures are studied under different applied electrical fields to identify the Joule heating factors affecting the temperature values in the channels. The temperature in active channels of two different lengths (30 and 180 μm) is characterized using optical methods, and electrical methods are used as a reference. The technique of optical thermometry is based on the data of micro-photoluminescence andmicro-Raman experiments. The electrical method is based on the measurements of current–voltage characteristics for comparison. It is shown that photoluminescence- and electrical-based temperature values demonstratesimilar behavior and good correlation. The Raman-based method, exploiting the temperature dependence of the frequency position of E 2high vibrational band in GaN, shows a significant deviation compared with electrical- andluminescence-based methods. This deviation is shown to be related to the residual mechanical strain in the layered structure and the formation of hot phonons. The influence of hot phonons and mechanical strain effectsincreases at high electrical load (>5 kV cm−1 ) and at high temperatures (>400 °C), respectively.
001008529 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001008529 588__ $$aDataset connected to DataCite
001008529 7001_ $$0P:(DE-HGF)0$$aNasieka, I. M.$$b1
001008529 7001_ $$0P:(DE-HGF)0$$aNaumov, A. V.$$b2
001008529 7001_ $$0P:(DE-HGF)0$$aKalyuzhnyi, V. V.$$b3
001008529 7001_ $$0P:(DE-HGF)0$$aLiubchenko, O. I.$$b4
001008529 7001_ $$0P:(DE-HGF)0$$aAntypov, I. O.$$b5
001008529 7001_ $$0P:(DE-HGF)0$$aBoyko, M. I.$$b6
001008529 7001_ $$0P:(DE-HGF)0$$aBelyaev, A. E.$$b7
001008529 773__ $$0PERI:(DE-600)2810904-1$$a10.1002/aelm.202201330$$gVol. 9, no. 6, p. 2201330$$n6$$p2201330$$tAdvanced electronic materials$$v9$$x2199-160X$$y2023
001008529 8564_ $$uhttps://juser.fz-juelich.de/record/1008529/files/Adv%20Elect%20Materials%20-%202023%20-%20Vitusevich%20-%20Thermometry%20of%20AlGaN%20GaN%202D%20Channels%20at%20High%20Electric%20Fields%20Using%20Electrical%20and.pdf$$yOpenAccess
001008529 8767_ $$d2023-06-21$$eAPC$$jZahlung erfolgt
001008529 909CO $$ooai:juser.fz-juelich.de:1008529$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001008529 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128738$$aForschungszentrum Jülich$$b0$$kFZJ
001008529 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001008529 9141_ $$y2023
001008529 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008529 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001008529 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008529 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2022-11-12$$wger
001008529 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001008529 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008529 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ELECTRON MATER : 2022$$d2023-08-28
001008529 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
001008529 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
001008529 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-07-24T07:52:16Z
001008529 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-07-24T07:52:16Z
001008529 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-07-24T07:52:16Z
001008529 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
001008529 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
001008529 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-28
001008529 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV ELECTRON MATER : 2022$$d2023-08-28
001008529 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
001008529 980__ $$ajournal
001008529 980__ $$aVDB
001008529 980__ $$aUNRESTRICTED
001008529 980__ $$aI:(DE-Juel1)IBI-3-20200312
001008529 980__ $$aAPC
001008529 9801_ $$aAPC
001008529 9801_ $$aFullTexts