001     1008529
005     20230929112535.0
024 7 _ |a 10.1002/aelm.202201330
|2 doi
024 7 _ |a 2128/34599
|2 Handle
024 7 _ |a WOS:000970867900001
|2 WOS
037 _ _ |a FZJ-2023-02366
082 _ _ |a 621.3
100 1 _ |a Vitusevich, S.
|0 P:(DE-Juel1)128738
|b 0
|e Corresponding author
245 _ _ |a Thermometry of AlGaN/GaN 2D Channels at High Electric Fields Using Electrical and Optical Methods
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH Verlag GmbH & Co. KG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1687938904_28150
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The active channels in AlGaN/GaN-based heterostructures are studied under different applied electrical fields to identify the Joule heating factors affecting the temperature values in the channels. The temperature in active channels of two different lengths (30 and 180 μm) is characterized using optical methods, and electrical methods are used as a reference. The technique of optical thermometry is based on the data of micro-photoluminescence andmicro-Raman experiments. The electrical method is based on the measurements of current–voltage characteristics for comparison. It is shown that photoluminescence- and electrical-based temperature values demonstratesimilar behavior and good correlation. The Raman-based method, exploiting the temperature dependence of the frequency position of E 2high vibrational band in GaN, shows a significant deviation compared with electrical- andluminescence-based methods. This deviation is shown to be related to the residual mechanical strain in the layered structure and the formation of hot phonons. The influence of hot phonons and mechanical strain effectsincreases at high electrical load (>5 kV cm−1 ) and at high temperatures (>400 °C), respectively.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Nasieka, I. M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Naumov, A. V.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kalyuzhnyi, V. V.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liubchenko, O. I.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Antypov, I. O.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Boyko, M. I.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Belyaev, A. E.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1002/aelm.202201330
|g Vol. 9, no. 6, p. 2201330
|0 PERI:(DE-600)2810904-1
|n 6
|p 2201330
|t Advanced electronic materials
|v 9
|y 2023
|x 2199-160X
856 4 _ |u https://juser.fz-juelich.de/record/1008529/files/Adv%20Elect%20Materials%20-%202023%20-%20Vitusevich%20-%20Thermometry%20of%20AlGaN%20GaN%202D%20Channels%20at%20High%20Electric%20Fields%20Using%20Electrical%20and.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1008529
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)128738
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2022
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-24T07:52:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-24T07:52:16Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-07-24T07:52:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ELECTRON MATER : 2022
|d 2023-08-28
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21