001008533 001__ 1008533
001008533 005__ 20240712113241.0
001008533 0247_ $$2doi$$a10.3390/molecules28093652
001008533 0247_ $$2Handle$$a2128/34565
001008533 0247_ $$2pmid$$a37175059
001008533 0247_ $$2WOS$$aWOS:000987739800001
001008533 037__ $$aFZJ-2023-02370
001008533 082__ $$a540
001008533 1001_ $$00000-0001-6226-1300$$aLazar, Iwona$$b0
001008533 245__ $$aThe Electrodegradation Process in PZT Ceramics under Exposure to Cosmic Environmental Conditions
001008533 260__ $$aBasel$$bMDPI$$c2023
001008533 3367_ $$2DRIVER$$aarticle
001008533 3367_ $$2DataCite$$aOutput Types/Journal article
001008533 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687417422_30391
001008533 3367_ $$2BibTeX$$aARTICLE
001008533 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008533 3367_ $$00$$2EndNote$$aJournal Article
001008533 520__ $$aLong-time electric field action on perovskite piezoelectric ceramic leads to chemical degradation. A new way to accelerate the degradation is the exposure of the ceramic to DC electric fields under a vacuum. A high-quality commercial piezoelectric material based on PbZr1−xTixO3 is used to study such impacts. To avoid the influence of ferroelectric properties and possible removal of oxygen and lead oxides during the degradation process, the experiments are in the temperature interval of 500 °C > T > TC. Changes in resistance during the electrodegradation process is an electrically-induced deoxidation, transforming the ceramic into a metallic-like material. This occurs with an extremely low concentration of effused oxygen of 1016 oxygen atoms per 1 cm3. Due to this concentration not obeying the Mott criterion for an isolator-metal transition, it is stated that the removal of oxygen mostly occurs along the grain boundaries. It agrees with the first-principle calculations regarding dislocations with oxygen vacancies. The decrease in resistivity during electrodegradation follows a power law and is associated with a decrease in the dislocation dimension. The observed reoxidation process is a lifeline for the reconstructing (self-healing) properties of electro-degraded ceramics in harsh cosmic conditions. Based on all of these investigations, a macroscopic and nanoscopic model of the electrodegradation is presented.
001008533 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001008533 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008533 7001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b1
001008533 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b2
001008533 7001_ $$0P:(DE-HGF)0$$aRandall, Clive A.$$b3
001008533 7001_ $$0P:(DE-HGF)0$$aKoperski, Janusz$$b4
001008533 7001_ $$00000-0001-8800-2294$$aNielen, Lutz$$b5
001008533 7001_ $$00000-0002-2116-2362$$aRoleder, Krystian$$b6$$eCorresponding author
001008533 7001_ $$0P:(DE-HGF)0$$aSzot, Krzysztof$$b7
001008533 773__ $$0PERI:(DE-600)2008644-1$$a10.3390/molecules28093652$$gVol. 28, no. 9, p. 3652 -$$n9$$p3652 -$$tMolecules$$v28$$x1420-3049$$y2023
001008533 8564_ $$uhttps://juser.fz-juelich.de/record/1008533/files/molecules-28-03652.pdf$$yOpenAccess
001008533 909CO $$ooai:juser.fz-juelich.de:1008533$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001008533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b1$$kFZJ
001008533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b2$$kFZJ
001008533 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001008533 9141_ $$y2023
001008533 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-23
001008533 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008533 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-23
001008533 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-23
001008533 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008533 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-23
001008533 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:01:17Z
001008533 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:01:17Z
001008533 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:01:17Z
001008533 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOLECULES : 2022$$d2023-10-22
001008533 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
001008533 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
001008533 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-22
001008533 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22
001008533 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22
001008533 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
001008533 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
001008533 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-22
001008533 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22
001008533 920__ $$lyes
001008533 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
001008533 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001008533 9801_ $$aFullTexts
001008533 980__ $$ajournal
001008533 980__ $$aVDB
001008533 980__ $$aUNRESTRICTED
001008533 980__ $$aI:(DE-Juel1)IEK-14-20191129
001008533 980__ $$aI:(DE-Juel1)PGI-1-20110106
001008533 981__ $$aI:(DE-Juel1)IET-4-20191129