001008564 001__ 1008564
001008564 005__ 20240116084316.0
001008564 0247_ $$2doi$$a10.1094/MPMI-10-22-0223-CR
001008564 0247_ $$2ISSN$$a0894-0282
001008564 0247_ $$2ISSN$$a1943-7706
001008564 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02397
001008564 0247_ $$2pmid$$a36989040
001008564 0247_ $$2WOS$$aWOS:001083946600001
001008564 037__ $$aFZJ-2023-02397
001008564 041__ $$aEnglish
001008564 082__ $$a570
001008564 1001_ $$0P:(DE-Juel1)178056$$aSanow, Stefan$$b0$$ufzj
001008564 245__ $$aMolecular mechanisms of Pseudomonas assisted plant nitrogen uptake - opportunities for modern agriculture
001008564 260__ $$a[Erscheinungsort nicht ermittelbar]$$bAPSnet$$c2023
001008564 3367_ $$2DRIVER$$aarticle
001008564 3367_ $$2DataCite$$aOutput Types/Journal article
001008564 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702022296_18117
001008564 3367_ $$2BibTeX$$aARTICLE
001008564 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008564 3367_ $$00$$2EndNote$$aJournal Article
001008564 520__ $$aPseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT and Pseudomonas sp. K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which in turn have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N), and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signalling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions, and differs at sufficient and deficient N. The molecular controls behind different plant response are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas driven nitrogen fixation and to point to possible agricultural solutions
001008564 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001008564 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008564 7001_ $$0P:(DE-Juel1)174213$$aKuang, Weiqi$$b1
001008564 7001_ $$0P:(DE-HGF)0$$aSchaaf, Gabriel$$b2
001008564 7001_ $$0P:(DE-Juel1)162356$$aHuesgen, Pitter$$b3$$ufzj
001008564 7001_ $$0P:(DE-Juel1)196685$$aSchurr, Ulrich$$b4$$ufzj
001008564 7001_ $$0P:(DE-HGF)0$$aRoessner, Ute$$b5
001008564 7001_ $$0P:(DE-Juel1)166460$$aWatt, Michelle$$b6
001008564 7001_ $$0P:(DE-Juel1)165155$$aArsova, Borjana$$b7$$eCorresponding author$$ufzj
001008564 773__ $$0PERI:(DE-600)2037108-1$$a10.1094/MPMI-10-22-0223-CR$$gp. MPMI-10-22-0223-CR$$n9$$p536-548$$tMolecular plant microbe interactions$$v36$$x0894-0282$$y2023
001008564 8564_ $$uhttps://juser.fz-juelich.de/record/1008564/files/Invoice_2241767.pdf
001008564 8564_ $$uhttps://juser.fz-juelich.de/record/1008564/files/mpmi-10-22-0223-cr.pdf$$yOpenAccess
001008564 8564_ $$uhttps://juser.fz-juelich.de/record/1008564/files/mpmi-10-22-0223-cr.gif?subformat=icon$$xicon$$yOpenAccess
001008564 8564_ $$uhttps://juser.fz-juelich.de/record/1008564/files/mpmi-10-22-0223-cr.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001008564 8564_ $$uhttps://juser.fz-juelich.de/record/1008564/files/mpmi-10-22-0223-cr.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001008564 8564_ $$uhttps://juser.fz-juelich.de/record/1008564/files/mpmi-10-22-0223-cr.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001008564 8767_ $$82241767$$92023-06-16$$a1200194276$$d2023-06-27$$ePage charges$$jZahlung erfolgt$$zUSD 2990,-
001008564 909CO $$ooai:juser.fz-juelich.de:1008564$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001008564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178056$$aForschungszentrum Jülich$$b0$$kFZJ
001008564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162356$$aForschungszentrum Jülich$$b3$$kFZJ
001008564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196685$$aForschungszentrum Jülich$$b4$$kFZJ
001008564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165155$$aForschungszentrum Jülich$$b7$$kFZJ
001008564 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001008564 9141_ $$y2023
001008564 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008564 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001008564 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001008564 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001008564 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-09
001008564 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-09
001008564 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008564 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-16T13:35:13Z
001008564 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-16T13:35:13Z
001008564 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-09
001008564 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-09
001008564 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008564 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-09
001008564 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001008564 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-09-16T13:35:13Z
001008564 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001008564 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
001008564 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001008564 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
001008564 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-26
001008564 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMOL PLANT MICROBE IN : 2022$$d2023-08-26
001008564 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001008564 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
001008564 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
001008564 980__ $$ajournal
001008564 980__ $$aVDB
001008564 980__ $$aUNRESTRICTED
001008564 980__ $$aI:(DE-Juel1)IBG-2-20101118
001008564 980__ $$aAPC
001008564 9801_ $$aAPC
001008564 9801_ $$aFullTexts