001     1008564
005     20240116084316.0
024 7 _ |a 10.1094/MPMI-10-22-0223-CR
|2 doi
024 7 _ |a 0894-0282
|2 ISSN
024 7 _ |a 1943-7706
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-02397
|2 datacite_doi
024 7 _ |a 36989040
|2 pmid
024 7 _ |a WOS:001083946600001
|2 WOS
037 _ _ |a FZJ-2023-02397
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Sanow, Stefan
|0 P:(DE-Juel1)178056
|b 0
|u fzj
245 _ _ |a Molecular mechanisms of Pseudomonas assisted plant nitrogen uptake - opportunities for modern agriculture
260 _ _ |a [Erscheinungsort nicht ermittelbar]
|c 2023
|b APSnet
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1702022296_18117
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT and Pseudomonas sp. K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which in turn have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N), and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signalling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions, and differs at sufficient and deficient N. The molecular controls behind different plant response are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas driven nitrogen fixation and to point to possible agricultural solutions
536 _ _ |a 2171 - Biological and environmental resources for sustainable use (POF4-217)
|0 G:(DE-HGF)POF4-2171
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kuang, Weiqi
|0 P:(DE-Juel1)174213
|b 1
700 1 _ |a Schaaf, Gabriel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Huesgen, Pitter
|0 P:(DE-Juel1)162356
|b 3
|u fzj
700 1 _ |a Schurr, Ulrich
|0 P:(DE-Juel1)196685
|b 4
|u fzj
700 1 _ |a Roessner, Ute
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Watt, Michelle
|0 P:(DE-Juel1)166460
|b 6
700 1 _ |a Arsova, Borjana
|0 P:(DE-Juel1)165155
|b 7
|e Corresponding author
|u fzj
773 _ _ |a 10.1094/MPMI-10-22-0223-CR
|g p. MPMI-10-22-0223-CR
|0 PERI:(DE-600)2037108-1
|n 9
|p 536-548
|t Molecular plant microbe interactions
|v 36
|y 2023
|x 0894-0282
856 4 _ |u https://juser.fz-juelich.de/record/1008564/files/Invoice_2241767.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1008564/files/mpmi-10-22-0223-cr.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1008564/files/mpmi-10-22-0223-cr.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1008564/files/mpmi-10-22-0223-cr.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1008564/files/mpmi-10-22-0223-cr.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1008564/files/mpmi-10-22-0223-cr.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1008564
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)178056
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162356
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)196685
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)165155
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2171
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-16T13:35:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-16T13:35:13Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-09
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-09-16T13:35:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2023-08-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL PLANT MICROBE IN : 2022
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-26
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21