001008593 001__ 1008593
001008593 005__ 20240708132704.0
001008593 037__ $$aFZJ-2023-02426
001008593 041__ $$aEnglish
001008593 1001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya$$b0$$eCorresponding author$$ufzj
001008593 1112_ $$a1st Helmholtz Energy Conference$$cKoblenz$$d2023-06-12 - 2023-06-13$$wGermany
001008593 245__ $$aDevelopment of Proton Conducting Cells: Challenges and Technological Approaches
001008593 260__ $$c2023
001008593 3367_ $$033$$2EndNote$$aConference Paper
001008593 3367_ $$2DataCite$$aOther
001008593 3367_ $$2BibTeX$$aINPROCEEDINGS
001008593 3367_ $$2DRIVER$$aconferenceObject
001008593 3367_ $$2ORCID$$aLECTURE_SPEECH
001008593 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1687781370_8052$$xAfter Call
001008593 520__ $$aThe energy transition targets amplify the need for economically viable hydrogen related technologies. Proton conducting ceramic cells (PCCs) are a novel and challenging technology that offers application windows at moderately increased temperature and further multitude of advantages compared to the conventional Solid Oxide Cells (SOCs). Despite this, the technological readiness level of PCCs trails behind that of SOCs due to several reasons related to the challenging nature of BaZr1-x(Ce,Y)xO3-δ (x=0.3-0.5, BZCY) based proton conducting ceramics, high temperature processing and relatively limited scalability. The present work focuses on the approaches related to optimization of the cell materials and components development to final PCCs. Following the technological chain from ceramic powder synthesis via wet chemical and solid state routes to the development of tape cast slurries, screen printing pastes or nano-suspensions, the decisive technological steps in the PCCs fabrication are outlined in the light of cell components microstructure, phase composition, their thermo-chemical stability and overall KPIs performance.
001008593 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001008593 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
001008593 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
001008593 7001_ $$0P:(DE-Juel1)190723$$aZeng, Yuan$$b1$$ufzj
001008593 7001_ $$0P:(DE-Juel1)187594$$aSchäfer, Laura-Alena$$b2$$ufzj
001008593 7001_ $$0P:(DE-Juel1)194299$$aDwivedi, Shivam Kumar$$b3$$ufzj
001008593 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
001008593 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b5$$ufzj
001008593 909CO $$ooai:juser.fz-juelich.de:1008593$$pVDB
001008593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b0$$kFZJ
001008593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190723$$aForschungszentrum Jülich$$b1$$kFZJ
001008593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187594$$aForschungszentrum Jülich$$b2$$kFZJ
001008593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194299$$aForschungszentrum Jülich$$b3$$kFZJ
001008593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
001008593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b5$$kFZJ
001008593 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001008593 9141_ $$y2023
001008593 920__ $$lyes
001008593 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001008593 980__ $$aconf
001008593 980__ $$aVDB
001008593 980__ $$aI:(DE-Juel1)IEK-1-20101013
001008593 980__ $$aUNRESTRICTED
001008593 981__ $$aI:(DE-Juel1)IMD-2-20101013