001     1008593
005     20240708132704.0
037 _ _ |a FZJ-2023-02426
041 _ _ |a English
100 1 _ |a Ivanova, Mariya
|0 P:(DE-Juel1)129617
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 1st Helmholtz Energy Conference
|c Koblenz
|d 2023-06-12 - 2023-06-13
|w Germany
245 _ _ |a Development of Proton Conducting Cells: Challenges and Technological Approaches
260 _ _ |c 2023
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1687781370_8052
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The energy transition targets amplify the need for economically viable hydrogen related technologies. Proton conducting ceramic cells (PCCs) are a novel and challenging technology that offers application windows at moderately increased temperature and further multitude of advantages compared to the conventional Solid Oxide Cells (SOCs). Despite this, the technological readiness level of PCCs trails behind that of SOCs due to several reasons related to the challenging nature of BaZr1-x(Ce,Y)xO3-δ (x=0.3-0.5, BZCY) based proton conducting ceramics, high temperature processing and relatively limited scalability. The present work focuses on the approaches related to optimization of the cell materials and components development to final PCCs. Following the technological chain from ceramic powder synthesis via wet chemical and solid state routes to the development of tape cast slurries, screen printing pastes or nano-suspensions, the decisive technological steps in the PCCs fabrication are outlined in the light of cell components microstructure, phase composition, their thermo-chemical stability and overall KPIs performance.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Zeng, Yuan
|0 P:(DE-Juel1)190723
|b 1
|u fzj
700 1 _ |a Schäfer, Laura-Alena
|0 P:(DE-Juel1)187594
|b 2
|u fzj
700 1 _ |a Dwivedi, Shivam Kumar
|0 P:(DE-Juel1)194299
|b 3
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 4
|u fzj
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:1008593
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190723
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)194299
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129636
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21