001008647 001__ 1008647
001008647 005__ 20231027114408.0
001008647 0247_ $$2doi$$a10.3390/diagnostics13122098
001008647 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02448
001008647 0247_ $$2pmid$$a37370993
001008647 0247_ $$2WOS$$aWOS:001014184900001
001008647 037__ $$aFZJ-2023-02448
001008647 082__ $$a610
001008647 1001_ $$0P:(DE-Juel1)178934$$aBarakat, Chadi$$b0$$eCorresponding author$$ufzj
001008647 245__ $$aDeveloping an Artificial Intelligence-Based Representation of a Virtual Patient Model for Real-Time Diagnosis of Acute Respiratory Distress Syndrome
001008647 260__ $$aBasel$$bMDPI$$c2023
001008647 3367_ $$2DRIVER$$aarticle
001008647 3367_ $$2DataCite$$aOutput Types/Journal article
001008647 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1688381121_3072
001008647 3367_ $$2BibTeX$$aARTICLE
001008647 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008647 3367_ $$00$$2EndNote$$aJournal Article
001008647 520__ $$aAcute Respiratory Distress Syndrome (ARDS) is a condition that endangers the lives of many Intensive Care Unit patients through gradual reduction of lung function. Due to its heterogeneity, this condition has been difficult to diagnose and treat, although it has been the subject of continuous research, leading to the development of several tools for modeling disease progression on the one hand, and guidelines for diagnosis on the other, mainly the “Berlin Definition”. This paper describes the development of a deep learning-based surrogate model of one such tool for modeling ARDS onset in a virtual patient: the Nottingham Physiology Simulator. The model-development process takes advantage of current machine learning and data-analysis techniques, as well as efficient hyperparameter-tuning methods, within a high-performance computing-enabled data science platform. The lightweight models developed through this process present comparable accuracy to the original simulator (per-parameter R2 > 0.90). The experimental process described herein serves as a proof of concept for the rapid development and dissemination of specialised diagnosis support systems based on pre-existing generalised mechanistic models, making use of supercomputing infrastructure for the development and testing processes and supported by open-source software for streamlined implementation in clinical routines.
001008647 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001008647 536__ $$0G:(EU-Grant)951732$$aEUROCC - National Competence Centres in the framework of EuroHPC (951732)$$c951732$$fH2020-JTI-EuroHPC-2019-2$$x1
001008647 536__ $$0G:(EU-Grant)951733$$aRAISE - Research on AI- and Simulation-Based Engineering at Exascale (951733)$$c951733$$fH2020-INFRAEDI-2019-1$$x2
001008647 536__ $$0G:(BMBF)01ZZ1803M$$aSMITH - Medizininformatik-Konsortium - Beitrag Forschungszentrum Jülich (01ZZ1803M)$$c01ZZ1803M$$x3
001008647 536__ $$0G:(EU-Grant)754304$$aDEEP-EST - DEEP - Extreme Scale Technologies (754304)$$c754304$$fH2020-FETHPC-2016$$x4
001008647 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008647 7001_ $$0P:(DE-Juel1)171553$$aSharafutdinov, Konstantin$$b1
001008647 7001_ $$0P:(DE-Juel1)185652$$aBusch, Josefine$$b2
001008647 7001_ $$0P:(DE-HGF)0$$aSaffaran, Sina$$b3
001008647 7001_ $$0P:(DE-HGF)0$$aBates, Declan G.$$b4
001008647 7001_ $$0P:(DE-HGF)0$$aHardman, Jonathan G.$$b5
001008647 7001_ $$0P:(DE-HGF)0$$aSchuppert, Andreas$$b6
001008647 7001_ $$0P:(DE-HGF)0$$aBrynjólfsson, Sigurður$$b7
001008647 7001_ $$0P:(DE-Juel1)185651$$aFritsch, Sebastian$$b8
001008647 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b9
001008647 770__ $$aAI-Driven Intelligent Health Care Diagnostic Solutions: A Machine Learning Approach
001008647 773__ $$0PERI:(DE-600)2662336-5$$a10.3390/diagnostics13122098$$gVol. 13, no. 12, p. 2098 -$$n12$$p2098$$tDiagnostics$$v13$$x2075-4418$$y2023
001008647 8564_ $$uhttps://juser.fz-juelich.de/record/1008647/files/main_document.pdf$$yOpenAccess
001008647 8767_ $$d2023-07-12$$eAPC$$jZahlung erfolgt
001008647 909CO $$ooai:juser.fz-juelich.de:1008647$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001008647 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178934$$aForschungszentrum Jülich$$b0$$kFZJ
001008647 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171553$$aRWTH Aachen$$b1$$kRWTH
001008647 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185652$$aForschungszentrum Jülich$$b2$$kFZJ
001008647 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b6$$kRWTH
001008647 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aHáskóli Íslands$$b7
001008647 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185651$$aForschungszentrum Jülich$$b8$$kFZJ
001008647 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b9$$kFZJ
001008647 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001008647 9141_ $$y2023
001008647 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008647 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001008647 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001008647 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001008647 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-10
001008647 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008647 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-10
001008647 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-10
001008647 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008647 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-10
001008647 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-07-07T16:30:38Z
001008647 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-07-07T16:30:38Z
001008647 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-07-07T16:30:38Z
001008647 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDIAGNOSTICS : 2022$$d2023-10-26
001008647 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001008647 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001008647 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
001008647 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
001008647 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
001008647 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001008647 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001008647 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-26
001008647 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001008647 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001008647 9801_ $$aFullTexts
001008647 980__ $$ajournal
001008647 980__ $$aVDB
001008647 980__ $$aUNRESTRICTED
001008647 980__ $$aI:(DE-Juel1)JSC-20090406
001008647 980__ $$aAPC