001     1008649
005     20231027114408.0
024 7 _ |a 10.1002/qj.4413
|2 doi
024 7 _ |a 0035-9009
|2 ISSN
024 7 _ |a 1477-870X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2023-02450
|2 datacite_doi
024 7 _ |a WOS:000907056800001
|2 WOS
037 _ _ |a FZJ-2023-02450
082 _ _ |a 550
100 1 _ |a Zhang, Lijie
|0 P:(DE-Juel1)185909
|b 0
|e Corresponding author
245 _ _ |a Large‐eddy simulation of soil moisture heterogeneity‐induced secondary circulation with ambient winds
260 _ _ |a Weinheim [u.a.]
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1688975816_30810
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Land surface heterogeneity in conjunction with ambient winds influences the convective atmospheric boundary layer by affecting the distribution of incoming solar radiation and forming secondary circulations. This study performed coupled large-eddy simulation (ICON-LEM) with a land surface model (TERRA-ML) over a flat river corridor mimicked by soil moisture heterogeneity to investigate the impact of ambient winds on secondary circulations. The coupled model employed double-periodic boundary conditions with a spatial scale of 4.8 km. All simulations used the same idealized initial atmospheric conditions with constant incident radiation of 700 W⋅m−2 and various ambient winds with different speeds (0 to 16 m⋅s−1) and directions (e.g., cross-river, parallel-river, and mixed). The atmospheric states are decomposed into ensemble-averaged, mesoscale, and turbulence. The results show that the secondary circulation structure persists under the parallel-river wind conditions independently of the wind speed but is destroyed when the cross-river wind is stronger than 2 m⋅s−1. The soil moisture and wind speed determine the influence on the surface energy distribution independent of the wind direction. However, secondary circulations increase advection and dispersive heat flux while decreasing turbulent energy flux. The vertical profiles of the wind variance reflect the secondary circulation, and the maximum value of the mesoscale vertical wind variance indicates the secondary circulation strength. The secondary circulation strength positively scales with the Bowen ratio, stability parameter (−Zi/L), and thermal heterogeneity parameter under cross-river wind and mixed wind conditions. The proposed similarity analyses and scaling approach provide a new quantitative perspective on the impact of the ambient wind under heteronomous soil moisture conditions on secondary circulation.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Poll, Stefan
|0 P:(DE-Juel1)165588
|b 1
700 1 _ |a Kollet, Stefan
|0 P:(DE-Juel1)151405
|b 2
773 _ _ |a 10.1002/qj.4413
|g Vol. 149, no. 751, p. 404 - 420
|0 PERI:(DE-600)2089168-4
|n 751
|p 404 - 420
|t Quarterly journal of the Royal Meteorological Society
|v 149
|y 2023
|x 0035-9009
856 4 _ |u https://juser.fz-juelich.de/record/1008649/files/Quart%20J%20Royal%20Meteoro%20Soc%20-%202022%20-%20Zhang%20-%20Large%E2%80%90eddy%20simulation%20of%20soil%20moisture%20heterogeneity%E2%80%90induced%20secondary.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1008649
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185909
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165588
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151405
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DEAL: Wiley 2019
|0 PC:(DE-HGF)0120
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-23
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-23
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b Q J ROY METEOR SOC : 2022
|d 2023-10-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b Q J ROY METEOR SOC : 2022
|d 2023-10-24
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21