001008666 001__ 1008666
001008666 005__ 20231027114408.0
001008666 0247_ $$2doi$$a10.1016/j.neuroimage.2023.120245
001008666 0247_ $$2ISSN$$a1053-8119
001008666 0247_ $$2ISSN$$a1095-9572
001008666 0247_ $$2Handle$$a2128/34596
001008666 0247_ $$2pmid$$a37353099
001008666 0247_ $$2WOS$$aWOS:001038690500001
001008666 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02466
001008666 037__ $$aFZJ-2023-02466
001008666 082__ $$a610
001008666 1001_ $$0P:(DE-Juel1)184969$$aLi, Xuan$$b0$$eCorresponding author$$ufzj
001008666 245__ $$aA topography-based predictive framework for naturalistic viewing fMRI
001008666 260__ $$aOrlando, Fla.$$bAcademic Press$$c2023
001008666 3367_ $$2DRIVER$$aarticle
001008666 3367_ $$2DataCite$$aOutput Types/Journal article
001008666 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687863291_16693
001008666 3367_ $$2BibTeX$$aARTICLE
001008666 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008666 3367_ $$00$$2EndNote$$aJournal Article
001008666 500__ $$aThis work was supported by the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no. 945539 (HBP SGA3), and the Deutsche Forschungsgemeinschaft (491111487).
001008666 520__ $$aFunctional magnetic resonance imaging (fMRI) during naturalistic viewing (NV) provides exciting opportunities for studying brain functions in more ecologically valid settings. Understanding individual differences in brain functions during NV and their behavioural relevance has recently become an important goal. However, methods specifically designed for this purpose remain limited. Here, we propose a topography-based predictive framework (TOPF) to fill this methodological gap. TOPF identifies individual-specific evoked activity topographies in a data-driven manner and examines their behavioural relevance using a machine learning-based predictive framework. We validate TOPF on both NV and task-based fMRI data from multiple conditions. Our results show that TOPF effectively and stably captures individual differences in evoked brain activity and successfully predicts phenotypes across cognition, emotion and personality on unseen subjects from their activity topographies. Moreover, TOPF compares favourably with functional connectivity-based approaches in prediction performance, with the identified predictive brain regions being neurobiologically interpretable. Crucially, we highlight the importance of examining individual evoked brain activity topographies in advancing our understanding of the brain-behaviour relationship. We believe that the TOPF approach provides a simple but powerful tool for understanding brain-behaviour relationships on an individual level with a strong potential for clinical applications.
001008666 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001008666 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
001008666 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008666 7001_ $$0P:(DE-Juel1)185938$$aFriedrich, Patrick$$b1$$ufzj
001008666 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b2$$ufzj
001008666 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b3$$ufzj
001008666 7001_ $$0P:(DE-Juel1)172811$$aWeis, Susanne$$b4$$ufzj
001008666 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2023.120245$$gp. 120245 -$$n.$$p120245 -$$tNeuroImage$$v277$$x1053-8119$$y2023
001008666 8564_ $$uhttps://juser.fz-juelich.de/record/1008666/files/1-s2.0-S1053811923003968-main.pdf$$yOpenAccess
001008666 8564_ $$uhttps://juser.fz-juelich.de/record/1008666/files/TOPF_Manuscript-revision-NIMG2023.docx$$yOpenAccess
001008666 8564_ $$uhttps://juser.fz-juelich.de/record/1008666/files/TOPF_Manuscript-revision.pdf$$yOpenAccess
001008666 8767_ $$d2023-08-28$$eAPC$$jZahlung erfolgt$$z3150
001008666 8767_ $$d2023-08-29$$eAPC$$jZahlung angewiesen$$zKostenstelle erfragt
001008666 909CO $$ooai:juser.fz-juelich.de:1008666$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001008666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184969$$aForschungszentrum Jülich$$b0$$kFZJ
001008666 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)184969$$a HHU Düsseldorf$$b0
001008666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185938$$aForschungszentrum Jülich$$b1$$kFZJ
001008666 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)185938$$a HHU Düsseldorf$$b1
001008666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b2$$kFZJ
001008666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
001008666 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172811$$aForschungszentrum Jülich$$b4$$kFZJ
001008666 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001008666 9141_ $$y2023
001008666 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008666 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001008666 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001008666 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001008666 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-12
001008666 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008666 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:47:40Z
001008666 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-12
001008666 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:47:40Z
001008666 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008666 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-12
001008666 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-12
001008666 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-12
001008666 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
001008666 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2022$$d2023-10-21
001008666 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001008666 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001008666 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:47:40Z
001008666 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001008666 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001008666 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001008666 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
001008666 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001008666 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
001008666 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2022$$d2023-10-21
001008666 920__ $$lyes
001008666 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001008666 980__ $$ajournal
001008666 980__ $$aVDB
001008666 980__ $$aUNRESTRICTED
001008666 980__ $$aI:(DE-Juel1)INM-7-20090406
001008666 980__ $$aAPC
001008666 9801_ $$aAPC
001008666 9801_ $$aFullTexts