001     1008666
005     20231027114408.0
024 7 _ |a 10.1016/j.neuroimage.2023.120245
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a 2128/34596
|2 Handle
024 7 _ |a 37353099
|2 pmid
024 7 _ |a WOS:001038690500001
|2 WOS
024 7 _ |a 10.34734/FZJ-2023-02466
|2 datacite_doi
037 _ _ |a FZJ-2023-02466
082 _ _ |a 610
100 1 _ |a Li, Xuan
|0 P:(DE-Juel1)184969
|b 0
|e Corresponding author
|u fzj
245 _ _ |a A topography-based predictive framework for naturalistic viewing fMRI
260 _ _ |a Orlando, Fla.
|c 2023
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1687863291_16693
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This work was supported by the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no. 945539 (HBP SGA3), and the Deutsche Forschungsgemeinschaft (491111487).
520 _ _ |a Functional magnetic resonance imaging (fMRI) during naturalistic viewing (NV) provides exciting opportunities for studying brain functions in more ecologically valid settings. Understanding individual differences in brain functions during NV and their behavioural relevance has recently become an important goal. However, methods specifically designed for this purpose remain limited. Here, we propose a topography-based predictive framework (TOPF) to fill this methodological gap. TOPF identifies individual-specific evoked activity topographies in a data-driven manner and examines their behavioural relevance using a machine learning-based predictive framework. We validate TOPF on both NV and task-based fMRI data from multiple conditions. Our results show that TOPF effectively and stably captures individual differences in evoked brain activity and successfully predicts phenotypes across cognition, emotion and personality on unseen subjects from their activity topographies. Moreover, TOPF compares favourably with functional connectivity-based approaches in prediction performance, with the identified predictive brain regions being neurobiologically interpretable. Crucially, we highlight the importance of examining individual evoked brain activity topographies in advancing our understanding of the brain-behaviour relationship. We believe that the TOPF approach provides a simple but powerful tool for understanding brain-behaviour relationships on an individual level with a strong potential for clinical applications.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Friedrich, Patrick
|0 P:(DE-Juel1)185938
|b 1
|u fzj
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 2
|u fzj
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 3
|u fzj
700 1 _ |a Weis, Susanne
|0 P:(DE-Juel1)172811
|b 4
|u fzj
773 _ _ |a 10.1016/j.neuroimage.2023.120245
|g p. 120245 -
|0 PERI:(DE-600)1471418-8
|n .
|p 120245 -
|t NeuroImage
|v 277
|y 2023
|x 1053-8119
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1008666/files/1-s2.0-S1053811923003968-main.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1008666/files/TOPF_Manuscript-revision-NIMG2023.docx
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1008666/files/TOPF_Manuscript-revision.pdf
909 C O |o oai:juser.fz-juelich.de:1008666
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184969
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)184969
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185938
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)185938
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172811
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2023
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-12
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:47:40Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:47:40Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-12
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:47:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2022
|d 2023-10-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21