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a b s t r a c t 

Functional magnetic resonance imaging (fMRI) during naturalistic viewing (NV) provides exciting opportunities 

for studying brain functions in more ecologically valid settings. Understanding individual differences in brain 

functions during NV and their behavioural relevance has recently become an important goal. However, methods 

specifically designed for this purpose remain limited. Here, we propose a topography-based predictive framework 

(TOPF) to fill this methodological gap. TOPF identifies individual-specific evoked activity topographies in a data- 

driven manner and examines their behavioural relevance using a machine learning-based predictive framework. 

We validate TOPF on both NV and task-based fMRI data from multiple conditions. Our results show that TOPF ef- 

fectively and stably captures individual differences in evoked brain activity and successfully predicts phenotypes 

across cognition, emotion and personality on unseen subjects from their activity topographies. Moreover, TOPF 

compares favourably with functional connectivity-based approaches in prediction performance, with the iden- 

tified predictive brain regions being neurobiologically interpretable. Crucially, we highlight the importance of 

examining individual evoked brain activity topographies in advancing our understanding of the brain-behaviour 

relationship. We believe that the TOPF approach provides a simple but powerful tool for understanding brain- 

behaviour relationships on an individual level with a strong potential for clinical applications. 
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. Introduction 

Functional magnetic resonance imaging (fMRI) during naturalistic
iewing (NV), i.e., movie-watching, has recently emerged as a use-
ul tool for studying brain function. NV fMRI uses naturalistic stimuli
e.g., movie clips) in the scanner to approximate real-life situations,
vercoming the limited ecological validity of conventional task-based
aradigms ( Sonkusare et al., 2019 ). Such naturalistic stimuli also elicit
omplex cognitive processes that may not be observable when using
implified conventional tasks, such as hierarchical memory in process-
ng unfolding stories ( Hasson et al., 2015 ). Furthermore, NV settings
mprove subject compliance and engagement, overcoming the unsys-
ematic noise caused by unconstrained brain states in resting-state (RS)
ettings ( Vanderwal et al., 2019 ). While the neural response during NV
ends to synchronise across participants due to exposure to the same
timulus ( Hasson et al., 2004 ), recent studies have found that it still
reserves substantial individual differences ( Vanderwal et al., 2017 ;
inn et al., 2020 ). These advantages make NV fMRI promising for ex-
loring individual differences ( Dubois and Adolphs, 2016 ), particularly
n higher-order brain functions and clinical applications ( Eickhoff et al.,
020 ). 
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NV fMRI signals can be assumed to contain three components:
timulus-evoked activity, spontaneous brain activity and noise, among
hich the stimulus-evoked activity is generally of primary interest. As

he focus of fMRI studies is gradually shifting from groups to individ-
als, a fundamental question regarding the stimulus-evoked activity is:
hy do different individual brains produce different responses to the

ame naturalistic stimulus? One practical way to interpret individual
ifferences in brain measures is to link them to individual behavioural
easures ( Dubois and Adolphs, 2016 ). Recent studies have found that

ndividual differences in neural response to the same naturalistic stim-
lus are associated with individual differences in not only behavioural
easures related to the presented stimulus but also intrinsic personal

raits ( Campbell et al., 2015 ; Di & Biswal, 2022 ; Finn et al., 2020 ;
ruskin et al., 2020 ). Methodologically, these studies commonly inter-
ret individual differences in stimulus-evoked activity by correlating
hem with individual behavioural measures for each voxel or region of
nterest (ROI) separately. However, this approach does not sufficiently
ncover the brain-behaviour relationship, because it typically only ex-
mines the behavioural relevance of a single voxel or ROI at each time,
ather than that of the spatially distributed activity patterns across the
hole brain. Furthermore, it does not ensure the generalisability of the

earned brain-behaviour relationship to unseen data. Therefore, a novel
viour (INM-7), Research Centre Jülich, Jülich 52428, Germany 
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omputational framework for understanding individual differences in
eural response during NV fMRI in relation to behaviour is needed. 

A predictive framework may be better suited for investigating
he brain-behaviour relationship compared to correlational approaches
 Dubois and Adolphs, 2016 ), as it will allow making predictions for
ndividual subjects from novel data, which has great practical utility
articularly in clinical settings. It will also provide important insights
nto the neural substrates of behaviours and biomarkers of diseases
 Rosenberg et al., 2018 ; Woo et al., 2017 ). More importantly, execution
f complex brain functions often requires participation of multiple brain
egions. Examining distributed activity patterns facilitates not only the
nderstanding of brain functional organisation but also mapping be-
ween brain function and behaviour ( Cohen et al., 2017 ; Eickhoff et al.,
018 ; Gonzalez-Castillo et al., 2012). A predictive framework can open
he door to a wealth of advanced machine learning models, which will
nable investigation of the behavioural relevance of distributed brain
ctivity patterns and identification of more complex brain-behaviour
elationships. 

Another important consideration for NV fMRI data analysis is sepa-
ating stimulus-evoked activity from other signal components ( Simony
 Chang, 2020 ). Traditional general linear model (GLM)-based ap-
roaches have been used to identify the stimulus-evoked activity based
n models of relevant features of presented stimulus (e.g., movie anno-
ations) ( Lahnakoski et al., 2012 ). These models can be difficult to ob-
ain due to the dynamic and multimodal nature of naturalistic stimuli.
y contrast, data-driven approaches extract the stimulus-evoked signals
ithout the need of explicit descriptions of the stimulus. They lever-
ge the time-locked nature of the stimulus across subjects, typically us-
ng the temporal variance shared across different subjects to reflect the
timulus-evoked activity ( Nastase et al., 2019 ). Applications of data-
riven approaches have greatly advanced our understanding of brain
unction in NV settings. 

One commonly used data-driven approach is the intersubject corre-
ation (ISC) method ( Hasson et al., 2004 ; Nastase et al., 2019 ), which
uantifies the shared variance across subjects by the correlation of their
MRI time series. However, in individual differences studies, applica-
ions of ISC often focus on the relative similarity of brain activity be-
ween subjects, rather than provide a measure of brain activity of indi-
iduals. While more sophisticated data-driven approaches, such as the
hared response model (SRM) ( Chen et al., 2015 ) and hyperalignment
 Haxby et al., 2011 ), can extract stimulus-evoked signals in individu-
ls, they often target fine-grained activity patterns within certain brain
egions and have high memory and computational demands. On the
ther hand, approaches that have been widely used for characterising
ndividual brain activity patterns on RS fMRI data, such as functional
onnectivity (FC) and independent component analysis (ICA), typically
oncern the interactions among ROIs or voxels rather than the stimulus-
voked activity. 

In this study, we propose a novel approach for understanding indi-
idual differences and brain-behaviour relationships on NV fMRI data,
alled topography-based predictive framework (TOPF). TOPF consists
f two components: (i) identifying individual evoked activity topogra-
hies across all ROIs in a data-driven manner, and (ii) examining their
elationship with individual behaviour via machine learning-based pre-
iction. Specifically, TOPF applies a principal component analysis (PCA)
o each ROI separately to identify stimulus-evoked activity time courses
hared across subjects by principal components (PCs). Subject-wise
C loadings thereby reflect the expression levels of these shared time
ourses specific to each subject. The activity topography for each subject
s then characterised by the pattern of these PC loadings across all ROIs,
ermed individual-specific topography ( Fig. 1 ). These topographies in-
uitively delineate the unique patterns of how strongly each subject’s
rain activity follows the shared stimulus-evoked activity across the
hole brain. A machine learning-based predictive framework is then

mployed to predict individual behavioural phenotypes based on these
opographies. 
2 
Capitalising on fMRI data of multiple NV and task-based paradigms
rom the human connectome project (HCP) ( Van Essen et al., 2013 ), we
rst show that TOPF can effectively and stably identify stimulus-evoked
esponses and capture meaningful individual differences therein in a
ata-driven way. Next, we show that TOPF successfully predicts phe-
otypes across cognition, emotion and personality on unseen subjects
ased on their activity topographies. Additionally, we show that predic-
ion performance of TOPF is similar to and mostly better than that of
hree popular FC-based approaches. Finally, we localise brain regions
hat are most predictive of the phenotypes and show that the prediction
odels learned by TOPF provide promising interpretability. 

. Results 

We used two datasets from the HCP (dataset1, n = 100; dataset2,
 = 179; see Tables S1 and S2 for an overview), covering fMRI data
rom three NV, three task and one RS conditions and eight behavioural
henotypes, to evaluate the TOPF approach. Detailed descriptions of the
atasets and methodology of TOPF can be found in Section 4 “Materi-
ls and Methods ”. In this section, we introduce several key concepts in
OPF and then report the results of our analyses. 

.1. TOPF identifies shared responses and individual-specific topographies 

The first step in TOPF is to identify individual stimulus-evoked ac-
ivity patterns across ROIs. Broadly, this step is built on an assumption
hat the observed NV fMRI time series in each ROI contains a stimulus-
voked component, such that it is shared but expressed with different in-
ensities across individuals ( Di & Biswal, 2022 ; Finn et al., 2020 ). In this
tudy, this time series component and its expression level for each sub-
ect are termed shared response and individual-specific expression (IE),
espectively. The pattern of the IE values across ROIs for each subject
s what we refer to as individual-specific topography. Such individual-
pecific topographies will be later used as features for phenotype pre-
iction. 

Aiming at individual topographies of a reasonable resolution rather
han the fine-grained patterns across voxels, we parcellated the whole
rain into 268 functionally defined ROIs ( Shen et al., 2013 ) and com-
uted the fMRI time series averaged over voxels within each ROI
 Fig. 1 A ). This reduced the spatial dimensionality of fMRI data, thereby
he computational load, and increased the signal-to-noise ratio. TOPF
ses PCA to identify the shared response and IEs. For each ROI sepa-
ately, the voxel-averaged fMRI time series of all subjects were subjected
o a PCA after z-score normalisation, where dimensionality reduction
as performed on the subject dimension rather than the temporal di-
ension of the fMRI data ( Fig. 1 B ). The shared response and IEs for each
OI are represented by the detected PC time series and the subject-wise
C loadings, respectively ( Fig. 1 C ). The individual-specific topography
f each subject is operationalised as the pattern of that subject’s PC load-
ngs across all ROIs ( Fig. 1 D ). As the first PC (PC1) captures the largest
emporal variance shared between subjects across the duration of the
can, we assume that PC1 is most likely to reflect the shared stimulus-
voked activity. In the main text we will mainly focus on PC1-based
esults (see results for the later PCs in Supplementary Information). Re-
ults on how different choices of the number of PCs influence prediction
erformance are shown in Section 2.8 . 

.2. TOPF effectively identifies task-evoked activity 

We used dataset1, containing task-based fMRI data of 100 unrelated
ubjects, to evaluate the validity of TOPF in identifying stimulus-evoked
ctivity. Two representative tasks of the seven HCP tasks ( Barch et al.,
013 ) that tapped into two different levels of the hierarchy of brain func-
ion, i.e., the motor task and the social cognition (social) task, were used
or the evaluation. Task-based fMRI data were used because the avail-
bility of the temporal structure of these conventional tasks permitted
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Fig. 1. Schematic of TOPF for identifying shared responses and individual-specific topographies. ( A ) For each subject, the whole brain is parcellated into distinct 

functionally defined ROIs and the fMRI BOLD time series averaged across voxels within each ROI is extracted. ( B ) For each ROI, the extracted fMRI time series is 

z-score standardised, collected across all subjects and then subjected to a PCA. ( C ) The resultant PCs and PC loadings of each ROI represent the shared response 

time series and individual-specific expressions (IEs), respectively. Here, we only plot the first PC (PC1) that explains the largest amount of variance for each of these 

example ROIs for illustration. ( D ) The pattern of the PC loadings of each subject across all ROIs is defined as an individual-specific topography (e.g., marked by the 

black box). 
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he application of GLM, which is expected to accurately identify task-
voked activations, thus providing a “ground truth ” to evaluate TOPF
 Pajula et al., 2012 ). For each task, a PCA was applied to the time series
cross the whole task of each ROI separately and the resulting PC1 time
eries was considered as a shared response for the respective ROI. 

We first evaluated the validity of the spatial pattern of evoked ac-
ivity captured by TOPF. It is assumed that any variance shared across
ubjects comes from processing the same stimulus or performing the
ame task at the same time ( Hasson et al., 2004 ; Nastase et al., 2019 ).
herefore, here we used the variance explained by PC1 to reflect group-

evel task-evoked “activation ”. A higher amount of variance explained
y PC1 indicates a stronger synchronisation of brain activity across sub-
ects evoked by the task ( Di and Biswal, 2022 ). The map of the variance
xplained by PC1 across ROIs was compared against a group-level acti-
ation (z-score) map derived by GLM ( Van Essen et al., 2013 ). The lat-
er was generated by aggregating the activation maps (i.e., computing
he maximum absolute values of the z-scores) across all experimental
onditions. A high Pearson’s correlation coefficient ( 𝑟 ) between these
wo maps was achieved for both tasks (motor: 𝑟 = 0 . 72 ; Fig. 2 A ; social:
 = 0 . 77 ; Fig. 2 C ; both 𝑝 < 𝑒 −10 ). At an individual subject level, the ac-
ivity topographies derived by TOPF (i.e., subject-specific PC1 loadings
cross ROIs) also achieved a moderate correspondence with those de-
ived by GLM (motor: 𝑟 = 0 . 50 ± 0 . 15 , social: 𝑟 = 0 . 64 ± 0 . 09 ; Fig. S1 A
nd B ), with TOPF capturing greater individual differences (Fig. S1 C ).
hese results indicate that the activity topographies derived by TOPF
ffectively reflect the spatial patterns of task-evoked activations. 

The validity of the shared response time series of each ROI was as-
essed by comparing it against a combination of models used in GLM
sing Pearson’s correlation. The latter was constructed as the convolu-
ion of the timing of the relevant events with a canonical hemodynamic
esponse function (HRF) aggregated across experimental conditions. For
oth tasks, a high correlation coefficient was observed in those strongly
ctivated ROIs, such as the left premotor cortex (related to tongue move-
ent) ( Schubotz et al., 2010 ) for the motor task ( 𝑟 = 0 . 82 ; Fig. 2 B )

nd the right temporoparietal junction (TPJ, related to social cognition)
 Van Overwalle, 2009 ) for the social task ( 𝑟 = 0 . 89 ; Fig. 2 D ; see Fig. S2
or results across the whole brain). These results further demonstrate
he ability of TOPF for capturing evoked brain activity. Besides, as we
xpected, PC1 better reflected task-evoked activity than PC2 and PC3
Fig. S3). 
m

3 
.3. Shared responses are stable across subsamples 

In TOPF, we assume that a stable identification of the shared re-
ponses is essential for a meaningful characterisation of individual dif-
erences (i.e., individual-specific topographies). To evaluate how the
hared responses detected by TOPF change with sample composition
nd sample size, we used NV fMRI data of 179 subjects in dataset2,
hich were acquired while watching three different movie clips, namely

Two Men ” (Movie1), “Welcome to Bridgeville ” (Movie2), and “Pock-
ts ” (Movie3). For each ROI and movie clip separately, we measured
he stability of the derived PC1 across 100 different subsamples over a
ange of sample sizes ( 𝑛 ) from 10 to 90 by using Pearson’s correlation.
o avoid possible bias from the family structure of this dataset ( Van Es-
en et al., 2013 ), no subjects from the same family were included in the
ame subsample. 

We quantified the overall stability as the mean stability across all
OIs ( Fig. 3 A ). As sample size increased, the overall stability also in-
reased and achieved a high value for all three movies with small
ariability across subsamples at 𝑛 = 90 (Movie1: 0 . 90 ± 0 . 01 ; Movie2:
 . 83 ± 0 . 02 ; Movie3: 0 . 84 ± 0 . 02 ). In particular, the stability of the PC1
ime series achieved above 0 . 80 at 𝑛 = 90 for most ROIs in the sensory,
rontal and parietal cortices ( Fig. 3 B ; Fig. S4). The overall stability was
uch lower for PC2 and PC3 than for PC1 (Fig. S5). 

.4. Individual differences can be captured by individual topographies 

As TOPF reflects individual differences by IEs of shared responses
ather than directly captures individuals’ idiosyncratic stimulus-evoked
rain activity, it is necessary to evaluate whether such characterisation
eaves enough room for individual variation. The individual-specific to-
ographies derived by TOPF at 𝑛 = 90 on the NV fMRI data stated above
ere used for this evaluation (see Fig. 4 A for an illustrative example).
or each pair of subjects, we computed their similarity in individual to-
ographies by Pearson’s correlation ( 𝑟 ) within each subsample for each
ovie clip separately ( Fig. 4 B ). On average, the between-subject simi-

arity for the three movies achieved 𝑟 = 0 . 47 ± 0 . 14 , 𝑟 = 0 . 41 ± 0 . 17 , and
 = 0 . 38 ± 0 . 18 , respectively. This result demonstrates that TOPF-derived
ndividual topographies capture a considerable amount of individual
ifferences. Additional analyses show that these individual differences
ainly came from ROIs beyond the sensory cortex (Fig. S6). 



X. Li, P. Friedrich, K.R. Patil et al. NeuroImage 277 (2023) 120245 

Fig. 2. TOPF identifies stimulus-evoked brain activity on task-based 

fMRI data. Correspondence between TOPF-derived topographies and 

GLM-derived activation maps, measured by Pearson’s correlation co- 

efficient ( 𝑟 ), for the motor ( A ) and social ( C ) tasks separately at the 

group level. For TOPF, each value represents the amount of variance 

explained by the PC1 time series in the given ROI. For GLM, each value 

represents the activation strength (z-score) aggregated across all ex- 

perimental conditions within each task (maximum of their absolute 

values) for the given ROI. The colour from yellow to red indicates the 

value from low to high. Correspondence ( 𝑟 ) between the detected PC1 

time series (blue) and the model used in GLM (red) for representative 

ROIs marked in circles in ( A ) and ( C ) for the motor ( B ) and social ( D ) 

tasks separately. For GLM, the model of each task is computed as the 

convolution of the HRF with the temporal structure of the given task 

aggregated over all experimental conditions. For TOPF, the results are 

computed over the time series across the whole scan of each task. The 

brain maps are visualised using BrainNet Viewer ( Xia et al., 2013 ). 

Fig. 3. TOPF stably identifies the shared response time series on NV fMRI data. 

( A ) Stability of PC1 over a range of sample sizes ( 𝑛 ) from 10 to 90. The overall 

stability for PC1 is computed as the stability (i.e., the mean absolute value of the 

Pearson’s correlation coefficients of PC1 over all pairs of subsamples) averaged 

across all ROIs for each movie clip separately. The error bars depict the standard 

deviation across subsample pairs. ( B ) Stability map of the PC1 time series across 

the whole brain at 𝑛 = 90 . For each ROI, the stability is averaged across all three 

movie clips. The colour from blue to red indicates the stability from low to high. 
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Fig. 4. TOPF captures individual differences by individual-specific topographies on N

derived on a randomly selected subsample ( 𝑛 = 90 ) for each movie clip separately. The

Each subject shows a unique spatial pattern of the IE values while watching the movi

coefficient, 𝑟 ) in the individual-specific topographies over all pairs of subjects withi

the within-subject similarity ( 𝑟 ) in the individual-specific topography over all subject

dashed lines inside each violin plot from top to bottom denote the third quartile, med

4 
On the other hand, to understand how individual topographies cap-
ured by TOPF change across movie clips, we computed the within-
ubject similarity for each subject and each pair of movie clips on each
ubsample separately. The mean within-subject similarity ( 𝑟 ) across sub-
ects and subsamples achieved approximately 𝑟 = 0 . 50 for all movie-clip
airs ( Fig. 4 C ). In particular, the pattern of the PC1 loadings over sub-
ects remained relatively stable across movie clips (Spearman’s correla-
ion 𝑟 = 0 . 44 − 0 . 75 ; Fig. S7) for the ROIs in the sensory cortex ( Gao et al.,
020 ). These results suggest that these individual topographies may re-
ect stable personal traits to a certain degree. 

.5. Individual topographies predict individual phenotypes 

The second step in TOPF is to link the identified individual-specific
opographies to individual phenotypes using a machine learning-based
redictive framework. We investigated a total of 8 phenotypes across
ognition (fluid intelligence and working memory), personality (open-
ess, agreeableness, conscientiousness, extraversion and neuroticism)
nd emotion (emotion recognition). For each phenotype, we used a sin-
le summary score as its measure (Table S2). For prediction of each
V fMRI data. ( A ) Individual-specific topographies of two representative subjects 

 colour from green to red indicates the IE value (PC1 loading) from low to high. 

e clips. ( B ) Distribution of the between-subject similarity (Pearson’s correlation 

n each subsample ( 𝑛 = 90 ) for each movie clip separately. ( C ) Distribution of 

s within each subsample ( 𝑛 = 90 ) for each pair of movies separately. The three 

ian and first quartile of the corresponding distribution, respectively. 
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Fig. 5. Performance of TOPF for phenotype prediction. Prediction performance is computed by the Pearson’s correlation coefficient ( 𝑟 ) between the residuals of 

predicted (pred_res) and observed scores (obs_res) over all subjects ( 𝑛 = 179 ) after regressing out sex, age and head motion (RMS-FD). Each box represents results 

from 10 repetitions of 10-fold CVs of each fMRI paradigm-phenotype combination (box: middle bar, median; upper and lower bars, third and first quartiles; upper and 

lower whiskers: maximum and minimum). Significant predictions ( 𝑝 < 0 . 05 , evaluated by permutation tests with 5000 iterations) before and after FDR correction are 

marked by red stars and black stars, respectively. NV and task paradigms are marked in red and blue, respectively. Only the phenotypes with significant predictions 

are shown here (see Tables S4 and S5 for the complete results). Mot: motor task; Soc: social task; Lan: language task. 
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henotype, we applied TOPF to fMRI data of 6 different paradigms from
he same cohort of subjects ( 𝑛 = 179 ; dataset2) separately, including the
hree NV paradigms (Movies 1-3) and three conventional tasks of similar
can durations, namely the motor, social, and language tasks (Table S1).
rediction was performed by using a ridge linear regression model for
ts simplicity and robustness. The model was evaluated by a nested 10-
old cross-validation (CV) procedure with 10 repetitions. In each fold,
he model was fitted on the training set by using the individual-specific
opographies (i.e., the PC1 loadings of all ROIs) as features. The hyper-
arameter was optimised via an inner 5-fold CV. The fitted model was
hen tested by predicting the phenotypes of the test set. To avoid data
eakage from the test set to the training set, features of the test set of each
old were derived based on the shared response learned on the train-
ng set, and subjects from the same family were ensured to stay either
n the training or the test set. Prediction performance was assessed by
he Pearson’s correlation coefficient ( 𝑟 ) between predicted and observed
cores over all subjects after regressing out potential confounds (age, sex
nd head motion; Table S3) from both scores ( Dinga et al., 2020 ). Head
otion was measured by the relative root-mean-square framewise dis-
lacement (RMS-FD). 

The prediction performance was significant for fluid intelligence,
orking memory, openness and emotion recognition (permutation-
ased 𝑝 < 0 . 05 , 5000 iterations; Fig. 5 ; see Tables S4 and S5 for results of
ll phenotypes). Our subsequent analyses will thus mainly focus on these
our phenotypes. Notably, the prediction performance varied substan-
ially across fMRI paradigms. For example, working memory and open-
ess were best predicted by Movie2 ( 𝑟 = 0.30 ± 0.04, permutation-based
 < 0.001) and Movie3 ( 𝑟 = 0.24 ± 0.04, 𝑝 = 0.002), respectively, whereas
uid intelligence and emotion recognition were best predicted by the
5 
anguage task ( 𝑟 = 0.27 ± 0.04, 𝑝 = 0.001) and social task ( 𝑟 = 0.23 ± 0.02,
 = 0.002), respectively. Similar results were obtained before confound
emoval (Table S6), using the leave-one-out CV (Table S7), and after we
ontrolled for the scan length by truncating all fMRI data to 3 mins (Fig.
8). 

.6. Comparisons with FC-based predictions 

To further validate the utility of TOPF for phenotype prediction, we
ompared TOPF with three commonly used prediction approaches in
MRI studies that employ different types of FC-based features. These in-
lude whole-brain connectome-based prediction (WConn), nodal con-
ectivity strength-based prediction (NConn), and connectome-based
redictive modelling (CPM) ( Finn et al., 2015; Shen et al., 2017 ). To
acilitate comparisons across methods, ridge regression models were ap-
lied for WConn and NConn. Performance of all the three approaches
as evaluated via the same procedure as used by TOPF. 

Overall, TOPF outperformed all the FC-based approaches across the
our phenotypes for all the fMRI paradigms except Movie3 (social: TOPF
s. WConn: 𝑝 = 0 . 011 , TOPF vs. NConn: 𝑝 = 0 . 001 , TOPF vs. CPM: 𝑝 =
 . 049 , language: TOPF vs. NConn: 𝑝 = 0 . 041 , others: 𝑝 > 0 . 05 , corrected
esampled t-tests ( Nadeau & Bengio, 2003 ); Fig. 6 A). For individual phe-
otypes, TOPF exhibited better performance than the other approaches
or predicting the fluid intelligence, openness and emotion recognition
cores across all fMRI paradigms (openness: TOPF vs. WConn/NConn:
oth 𝑝 = 0 . 036 , others: 𝑝 > 0 . 05 ; Fig. 6 B). While the best approach var-
ed across individual fMRI paradigms and phenotypes, TOPF achieved
he best prediction performance for all the four phenotypes (Fig. S9).
oreover, performance of applying TOPF on NV and task data also out-
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Fig. 6. Comparisons between TOPF and FC-based prediction approaches. Each method is evaluated via 10 repetitions of a 10-fold CV for each fMRI paradigm and 

phenotype separately. Results averaged ( A ) over the four phenotypes and ( B ) over the fMRI paradigms are shown. Prediction performance is measured as the Pearson’s 

correlation coefficient ( 𝑟 ) between the residuals of predicted (pred_res) and observed scores (obs_res) after regressing out sex, age and head motion (RMS-FD) over 

all subjects ( 𝑛 = 179 ). Boxes: upper and lower whiskers: maximum and minimum; bars within each box from top to bottom: third quartile, median and first quartile. 

Statistical significance between TOPF and each of the other approaches is examined by using a corrected resampled paired t-test ( Nadeau & Bengio, 2003 ). ∗ : 𝑝 < 0 . 05 . 
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erformed that of applying the FC-based approaches on RS data (Fig.
10). 

.7. Phenotype-related brain regions 

To understand the neurobiological interpretation behind the predic-
ion models obtained by TOPF, we identified ROIs that were predic-
ive of these phenotypes based on their permutation feature importance
 Breiman, 2001 ). For each phenotype, we identified the predictive ROIs
nly for the fMRI paradigms on which the phenotype was significantly
redicted. For fluid intelligence, we identified a broad range of predic-
ive ROIs, spreading across the frontal, parietal, temporal and cerebel-
ar cortices ( Dubois et al., 2018a ) ( Fig. 7 A ). For working memory, the
dentified ROIs were mainly located in the prefrontal, parietal, medial
emporal and cerebellar cortices ( Rottschy et al., 2012 ) ( Fig. 7 B ). For
penness, the identified ROIs were mainly located in the left frontal lobe
nd cerebellum ( Adelstein et al., 2011 ) ( Fig. 7 C ). For emotion recogni-
ion, the identified ROIs were mainly located in the right hemisphere,
overing the frontal cortex, TPJ and subcortical regions ( Ruffman et al.,
008 ) ( Fig. 7 D ). Furthermore, different fMRI paradigms exhibited dis-
inct spatial patterns of predictive ROIs for the same phenotype (Jaccard
imilarity: 0.02 to 0.10; Fig. 7 E ). 

.8. Impact of different choices of the number of PCs on prediction 

erformance 

Our previous analyses of TOPF focused on using PC1 time series as
hared responses, as we assume that PC1 best reflects the stimulus-
voked activity. Here, we further investigate the impact of different
hoices of PCs on prediction performance of TOPF. First, we evaluated
he number of significant PCs for each ROI and each fMRI paradigm by
sing a conservative permutation test, where the null distribution was
uilt with the amount of variance explained by PC1 from 10000 per-
utations ( Di & Biswal, 2022 ; Kauppi et al., 2010 ); a PC is considered
6 
o be meaningful if the variance explained by it significantly exceeds
hance level. For all fMRI paradigms, most ROIs (237 - 266/268) exhib-
ted a significant PC1 ( 𝑝 < 0 . 05 ; Fig. 8 A), 2 - 40 ROIs had a significant
C2, and no ROIs had significant results for the later PCs. Therefore, our
ollowing analyses focused on PC1 and PC2. 

The variance explained by PC1 varied remarkably across ROIs for
ll the fMRI paradigms (ranging from 1.6% to 57.0%; Fig. 8 B), with
he mean across ROIs achieving around 12% for NV and 8% for task
ata. ROIs for which PC1 explained larger amounts of variance were
istributed in visual, auditory and sensory association cortices for NV
aradigms and in task-evoked regions for task paradigms (Fig. S11). By
ontrast, PC2 explained around 4% and 3% of the total variance aver-
ged across ROIs for NV and task data, respectively, with the explained
ariance of individual ROIs ranging from 1.6% to 8.4%. 

For phenotype prediction, the average performance over all fMRI
aradigms was better for PC1-based than for PC2-based TOPF for all
he four phenotypes ( Fig. 8 C). As the amount of explained variance
ay also influence the utility of the PCs for prediction, we addition-

lly conducted a feature-selection step with five different thresholds of
xplained variance (0%, 3%, 5%, 7%, 10%). The feature selection was
onducted across all ROIs for PC1, PC2 and PC1 + 2 (using loadings of
oth PC1 and PC2 as features) separately, resulting in 15 different set-
ings. Overall, prediction performance was improved after feature se-
ection, and the best performance was achieved in most cases by using
C1- or PC1 + 2-based prediction (Fig. S12). 

. Discussion 

NV settings provide promising opportunities for facilitating our un-
erstanding of individual differences in brain functioning, yet they
resent new challenges for fMRI data analysis. In this study, we propose
 simple computational framework, TOPF, which allows us to charac-
erise stimulus-evoked activity topographies in individuals and investi-
ate their behavioural relevance using machine learning-based predic-
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Fig. 7. Predictive ROIs for each phenotype and fMRI paradigm with significant predictions. ( A –D ) The predictive ROIs (marked in red) are identified for each fMRI 

paradigm with significant predictions ( 𝑝 < 0 . 05 in Fig. 5 ) for fluid intelligence ( A ), working memory ( B ), openness ( C ) and emotion recognition ( D ) separately. Only 

the ROIs for which the permutation feature importance over all CV folds and repetitions is significantly larger than zero (permutation-based, corrected 𝑝 < 0 . 05 , 
with 5000 permutations) are identified as predictive ROIs. ( E ) The similarity in the spatial patterns of the predictive ROIs is assessed by the Jaccard similarity for 

each pair of fMRI paradigms within each phenotype separately. No result is plotted for emotion recognition, as only one fMRI paradigm (the social task) achieves a 

significant result. 

Fig. 8. Comparisons across different choices of PCs for TOPF. ( A ) Number of ROIs with significant PCs (N_sig) for each of the first five PCs. Significance of each PC 

of each ROI is evaluated separately via a conservative permutation test, where the null distribution is built with the amount of variance explained by PC1 of the 

given ROI from 10000 permutations ( Di & Biswal, 2022 ). The p-value threshold here is set to 0.05. ( B ) Distribution of the amount of variance explained by PC1 and 

PC2 separately for individual fMRI paradigms. ( C ) Prediction performance of PC1- and PC2-based TOPF separately. Each condition is evaluated via 10 repetitions of 

10-fold CVs for each fMRI paradigm and phenotype separately. Results shown are aggregated across all fMRI paradigms for each phenotype. Prediction performance 

is measured as the Pearson’s correlation coefficient ( 𝑟 ) between the residuals of predicted (pred_res) and observed scores (obs_res) after regressing out sex, age and 

head motion over all subjects ( 𝑛 = 179 ). Boxes: upper and lower whiskers: maximum and minimum; bars within each box from top to bottom: third quartile, median 

and first quartile; green triangles: means. 
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ive modelling. By validating TOPF on both NV and task fMRI data, we
emonstrate that the individual-specific topographies conceptualised by
OPF provide a practical characterisation for individual activity pat-
erns during NV. These topographies also predict multiple behavioural
henotypes and often outperform FC-based features. Additionally, the
earned predictive models provide neurobiologically meaningful inter-
retations. TOPF is a generic framework that can be readily adapted for
linical applications, thus holding great potential for advancing basic
nd clinical neuroscience studies. 

.1. Data-driven perspective on stimulus-evoked activity 

While classic ICA and FC-based approaches are useful for studying in-
ividual differences in the interactions among brain regions, individual
ifferences in brain activity directly driven by the naturalistic stimulus,
hat is, the stimulus-evoked activity, might be of more interest for NV
MRI studies. On the other hand, the utility of GLM-based approaches
o capture individual stimulus-evoked activity on NV fMRI data is lim-
ted by their requirement for accurate stimulus descriptions. Our TOPF
pproach avoids these issues by identifying stimulus-evoked activity
n a data-driven way. It detects stimulus-evoked time courses shared
cross subjects for each ROI separately and characterises individual ac-
ivity patterns by the individual-specific expression (termed IE) of these
hared responses across ROIs (termed individual-specific topography). 

Similar to GLM, TOPF also defines a (few) consistent response time
ourse(s) across subjects (TOPF: PC time courses; GLM: predefined re-
ressors) and uses them as a common basis to estimate individual
ask/stimulus-evoked activity (TOPF: PC loadings; GLM: regression co-
fficients). However, TOPF, as a data-driven approach, does not rely
n prior knowledge about relevant features of the presented naturalistic
timulus for extracting stimulus-evoked signals as GLM does, thus highly
uitable for dealing with fMRI data under NV and possibly other com-
lex naturalistic conditions. Notably, whereas GLM picks up individual
diosyncrasies by using predefined models to fit individual fMRI sig-
als, TOPF uses IEs of shared responses to reflect individual variation.
ven so, TOPF still leaves enough room for preserving individual dif-
erences. Moreover, the data-driven nature may allow TOPF to capture
nique individual differences that are not induced by explicitly prede-
ned task designs ( Bolt et al., 2018 ) and thus may not be detected by
LM. Future work could compare the prediction performance of TOPF
nd GLM-based methods to better understand their differences in the
haracterisation of individual differences. 

TOPF is also closely related to several existing data-driven ap-
roaches for detecting stimulus-evoked activity. A common rationale be-
ind these data-driven approaches is that any temporal variance shared
cross subjects can only originate in the processing of the same stimu-
us. For example, the commonly used ISC approach often computes the
airwise or leave-one-out (LOO) correlation (i.e., correlation between
he fMRI time series of a subject and the time series averaged across
he other subjects) to reflect the similarity in brain activity between
ubjects ( Finn et al., 2020 ; Nastase et al., 2019 ). Although similar, PC1
oadings have been shown in a previous study to be more computa-
ionally efficient than the LOO correlations ( Di & Biswal, 2022 ), thus
llowing for more efficient integrations with machine learning models,
specially when the number of subjects/ROIs is large. More importantly,
OPF aims to use an “absolute ” expression of a group-level basis to re-
ect individual activity instead of providing a relative measure. While
RM ( Chen et al., 2015 ) and hyperalignment ( Haxby et al., 2011 ) ap-
roaches adopt similar logic, they often focus on more fine-grained indi-
idual functional topographies within certain brain regions rather than
he whole-brain topographies. Tensor-ICA ( Beckmann & Smith, 2005 ;
ampbell et al., 2015 ), on the other hand, identifies a set of common
timulus-evoked spatial components throughout the whole brain and
ssociated time courses, with individual differences being characterised
or each component. By contrast, TOPF characterises individual varia-
8 
ion by ROI, delineating individual topographies across the whole brain
t a resolution suitable for machine learning-based predictions. 

.2. Individual differences in activity topographies evoked during NV 

TOPF characterises individual variation by IEs of stimulus-evoked
esponses that are shared across subjects rather than directly captures
ndividual idiosyncratic responses. Although the latter might be concep-
ually more desirable, we show that the IEs also captured considerable
nd meaningful individual differences. These IEs were more variable
cross subjects in frontoparietal, limbic, subcortical and default mode
etwork regions than in sensory regions. These results partially align
ith previous studies observing higher intersubject variability in FC
atterns of brain regions associated with cognitive control in both RS
 Finn et al., 2015 ; Laumann et al., 2015 ; Mueller et al., 2013 ) and NV
ettings ( Vanderwal et al., 2017 ). Moreover, for the sensory regions, al-
hough the intersubject variability was relatively small, patterns of the
Es across subjects were stable across movie clips and thus less sensitive
o the specific movie content. This is in line with recent studies showing
hat the way the brain processes complex sensory and social information
uring NV may be an intrinsic characteristic of individuals ( Gao et al.,
020 ; Lahnakoski et al., 2012 ) and associated with brain baseline func-
ional organisation ( Gruskin & Patel, 2022 ). We note that further work
s needed to assess whether our findings here are generalisable across
ifferent movie types. 

.3. Comparisons across fMRI paradigms for TOPF-based phenotype 

rediction 

NV fMRI paradigms performed better than the conventional task
aradigms for predicting working memory and openness. This result is in
ine with previous studies discovering significant relationships between
ndividual differences in brain responses during NV and individual dif-
erences in personality traits and working memory capability by using
nivariate analyses ( Finn et al., 2018 ; Finn et al., 2020 ). The better per-
ormance of these NV paradigms suggests that watching these movies
ay evoke stronger individual differences relevant to these phenotypes

han performing those strictly-controlled tasks. Such advantages of NV
ettings may arise from improved subject compliance and engagement,
educed head motion during the scan ( Vanderwal et al., 2017 ), as well
s presence of brain states and cognitive processes that are uniquely
voked when processing complex naturalistic stimuli ( Finn et al., 2017 ;
asson et al., 2015 ; Van der Meer et al., 2020 ). 

Different movies showed substantially different prediction perfor-
ance, with the observation remaining the same after we controlled for

can (movie) length. When movie length was shortened, the prediction
erformance slightly degraded in general but in certain cases was even
mproved. These results suggest that movie length may not be a key fac-
or that determines the utility of a movie for phenotype prediction. The
ifferences in prediction performance across movies may actually re-
ult from various factors rather than purely movie length. For instance,
ovies with richer social content tend to evoke greater inter-subject

ariability in interpretations of the movies, thus potentially reflect-
ng stronger behaviourally relevant individual differences ( Finn et al.,
018 ; Gruskin et al., 2020 ). Commercial movies can evoke more reli-
ble responses across subjects than real-life, unedited movies by using
rofessional filmmaking techniques to enhance audiences’ engagement
 Hasson et al., 2010 ). Furthermore, familiarity with the movies (e.g.,
hether subjects have seen the movie before) may also affect subjects’

nterpretations of the movie ( Jääskeläinen et al., 2008 ), and thus be
mportant to consider when understanding the evoked individual dif-
erences in neural responses. Future work is needed to better under-
tand which factors and how they influence prediction performance of
ehaviour in NV settings by using more movies with different features. 

NV fMRI paradigms did not always achieve the best performance for
redicting various phenotypes. For fluid intelligence and emotion recog-
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ition scores, the language and social tasks performed best, respectively.
ne distinct feature of these two tasks is that their experimental designs
nd the brain function they target are closely related to the respective
henotype they predict. Brain activations of language comprehension
nd maths processing in the HCP language task have shown significant
enetic correlations with fluid intelligence ( Le Guen et al., 2018 ). Emo-
ion recognition has been acknowledged as a core aspect of social cog-
ition ( Gallese et al., 2004 ) and the two brain functions have shown
verlapping activations in an fMRI study ( Mier et al., 2010 ). These find-
ngs suggest that the choice of fMRI paradigms for phenotype prediction
hould be made individually for each specific research question. 

.4. Comparisons across methods for phenotype prediction 

Motivated by the development of machine learning techniques, a
rowing body of work has recently applied machine learning predic-
ive models on various brain measures to predict individual phenotypes
 Dosenbach et al., 2010 ; Finn et al., 2015 ; Nostro et al., 2018 ; Weis et al.,
020 ). Most brain measures used for phenotype prediction in fMRI stud-
es have so far been constructed based on FC. In this study, the overall
rediction performance of TOPF across fMRI paradigms and phenotypes
as similar to and in most cases better than that of the three popular
C-based prediction approaches (i.e., WConn, NConn and CPM), demon-
trating the validity of TOPF. More importantly, this result shows that,
eyond FC-based brain measures, individual differences in evoked re-
ponses are also useful for phenotype prediction. Whereas FC depicts
ndividual differences in interactions between brain regions, TOPF di-
ectly captures individual differences in the activity of each brain re-
ion, and thus they may reflect different aspects of brain function. In
act, previous studies have shown that individual phenotypes can be
redicted from individual differences in brain activations on task fMRI
ata ( Greene et al., 2020 ; Sripada et al., 2020 ), which are computa-
ionally different but conceptually similar to the individual differences
aptured by TOPF. 

For predicting fluid intelligence and openness, TOPF on average out-
erformed the FC-based methods. Many previous studies have reliably
redicted fluid intelligence and openness from resting state fMRI data
 Smith et al., 2013 ; Dubois et al., 2018b ). Recent evidence has shown
hat task- or movie-induced brain states can further improve predic-
ion of these phenotypes, by amplifying or bringing out relevant in-
ividual differences that are unique to the evoked brain states ( Finn
nd Bandettini, 2021; Greene et al., 2018 )). These findings may sug-
est that TOPF better captured individual differences related to these
henotypes by having a higher level of focus on the evoked brain sig-
als compared to the FC-based methods. For emotion recognition scores,
either TOPF nor the FC-based methods achieved a satisfying prediction
erformance. This result is consistent with previous findings that emo-
ional traits are in general harder to predict than cognitive traits ( Finn
 Bandettini, 2021 , Kong et al., 2019 ). One explanation could be that

ndividual differences in emotional traits are not effectively reflected
y brain measures in activity and FC. Alternatively, this result may
tem from limitations in reliability and validity of the phenotypic mea-
ures ( Tiego and Fornito, 2022 ). For predicting working memory scores,
hether TOPF outperformed the other methods largely depended on

he fMRI paradigms. Previous studies have shown that different tasks or
aturalistic stimuli can elicit highly distinct individual differences and
rain states ( Finn et al., 2017 ; Hasson et al., 2008a ). For example, watch-
ng certain movie clips has been shown to elicit a unique hierarchical or-
anisation of working memory ( Hasson et al., 2015 ). On the other hand,
ctivity- and FC-based features may capture unique and complementary
nformation in individual differences that are useful in different situa-
ions ( Di & Biswal, 2019 ; Tsvetanov et al., 2018 ). Further investigation
s needed to better understand the differences across fMRI paradigms
nd between FC- and activity-based features. Future work could also
onsider combining FC- and activity-based features to further improve
rediction performance ( Greene et al., 2020 ). 
9 
Computationally, TOPF uses a remarkably smaller number of fea-
ures ( 𝑛 ROIs) than approaches using whole-brain connectomes as fea-
ures ( 𝑛 ( 𝑛 − 1 )∕2 connections). This feature of TOPF greatly eases the
roblem of overfitting and reduces the number of observations (i.e.,
ubjects) needed for a meaningful prediction, alleviating the critical
roblem of relatively small sample sizes of the current public NV fMRI
atasets. Furthermore, different from FC-based approaches which are of-
en applied to fMRI data of individual subjects, TOPF captures individual
ifferences via an inter-subject approach. The latter is particularly useful
or analysing NV fMRI data, which separates stimulus-driven responses
ased on their synchronisation across subjects ( Hasson et al., 2004 ;
astase et al., 2019 ; Simony & Chang, 2020 ). In TOPF, we use PCA to de-

ect shared stimulus-evoked responses and their loadings onto subjects’
MRI signals to reflect individual differences, which have shown poten-
ial for phenotype prediction in a recent study ( Di and Biswal, 2022 ). It
s worth noting that from a computational perspective, TOPF uses PCA
o perform a dimensionality reduction on the subject dimension. This
istinguishes our study from the majority of fMRI studies which use
CA to reduce the dimensions of spatial or temporal features of fMRI
ata. 

Moreover, there are other inter-subject approaches that could be
sed for studying individual differences in brain activity during NV from
ifferent perspectives. For example, inter-subject functional correlation
 Simony et al., 2016 ) can capture stimulus-driven FC profiles of individ-
als, while SRM ( Chen et al., 2015 ) and hyperalignment ( Haxby et al.,
011 ) can offer a more fine-grained representation of individual idiosyn-
rasies in brain functional topographies. A recent study has shown that
unctionally hyperaligned, fine-grained FC profiles can remarkably im-
rove prediction performance for behaviour on RS and task fMRI data
 Feilong et al., 2021 ). Future work may also integrate these inter-subject
pproaches into a machine learning framework as a preprocessing or
eature extraction step for phenotype prediction on NV fMRI data. 

.5. Different choices of number of PCs for TOPF-based phenotype 

rediction 

In general, PC1 outperformed PC2-based TOPF for predicting the
our phenotypes. This result fits our expectation that PC1 better re-
ects shared brain activity across subjects and provides more reliable
rounds for characterising meaningful individual differences than the
ater PCs. Furthermore, the performance of TOPF was improved overall
hen applying a threshold to preserve only the PCs for which the cap-

ured variance exceeded a certain amount. This result further supports
ur assumption that PCs capturing larger amounts of variance tend to
eflect more stable and meaningful individual differences by their load-
ngs. However, we also observed that combining PC1 and PC2-based
eatures can sometimes improve prediction performance. This result
uggests that different PCs may reflect different aspects of a cognitive
rocess, e.g., different consistent responses of different subject groups,
n particular for clinical and ageing populations ( Byrge et al., 2015 ;
ampbell et al., 2015 ; Di & Biswal, 2022 ). Therefore, including mul-
iple PCs may provide a more comprehensive characterisation of indi-
idual differences across the whole sample and thus benefit behavioural
rediction. 

.6. Interpretations of identified phenotype-related brain regions 

In addition to good prediction performance, we also expected TOPF
o provide good interpretability so that it can help understand the brain-
ehaviour relationship. In general, the predictive brain regions we iden-
ified in this study showed overlaps with previous literature. For ex-
mple, the ROIs identified for fluid intelligence and working memory
ere mainly located in brain regions supporting cognitive functions,
.g., frontal and parietal cortices ( Jung & Haier, 2007 ), showing overlaps
ith findings of previous meta-analytic studies ( Rottschy et al., 2012 ).
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he association between the left frontal lobe and the openness person-
lity trait has been reported by previous studies using conventional task
MRI data and brain structural data ( DeYoung, 2010 ; Vartanian et al.,
018 ). The TPJ identified for emotion recognition has been recognised
s a key region for social and emotion processing ( Van Overwalle, 2009 ).
hese results demonstrate that TOPF holds great potential for facil-

tating our understanding of the neurobiological bases of behaviour.
urthermore, the patterns of predictive ROIs identified for TOPF var-
ed largely across fMRI paradigms, indicating that different tasks and
ovies may elicit unique neural processes related to the same behaviour

r phenotype ( Geerligs et al., 2015 ). We expect that future studies on
he important question of whether and how brain function under natu-
alistic conditions differs from that measured in strictly controlled task
aradigms can be facilitated by using our approach. 

.7. Limitations and future directions 

We note several limitations of this study as well as possible future
irections. First, as our interest in this study focuses on individual dif-
erences in evoked brain activity, we only included the first two PCs
hat captured the largest amount of variance in our analyses for TOPF.
revious studies have shown that a low-dimensional representation of
rain activity and dynamics can reflect meaningful individual differ-
nces, although such representation may capture only a small part of
he total variance ( Misra et al., 2021 ; Shine et al., 2019 ). These find-
ngs are similar to our result in this study where the first two PCs on
verage captured less than 20% the total variance. However, it may still
e interesting for future studies on NV fMRI to explore the remaining
ariance, as it contains a large part of individual idiosyncratic informa-
ion that could potentially be useful for prediction of phenotypes beyond
ognition. Besides, the orthogonality of these PCs may complicate their
nterpretations. Other methods, such as non-negative matrix factorisa-
ion ( Lee & Seung, 1999 ), might be used to detect the shared responses
n future work for better interpretability. 

Second, although we showed that TOPF can achieve significant per-
ormance on both naturalistic paradigms and conventional tasks, we
ote that these two are essentially different from each other. While nat-
ralistic settings use a common, continuous stimulus for all subjects dur-
ng the whole scan, tasks often use a block or event-related design. For
lock-designed tasks, the exact stimulus content and event onset timing
ithin each block may not always be consistent across subjects. How-

ver, our results in this study demonstrate that TOPF is not interested
n specific events, but rather the performance of the task across the full
lock. Further investigation is needed to better understand the temporal
ariance shared across subjects and individual differences captured by
OPF as well as other inter-subject approaches. Future work could also
eek to improve temporal alignment across subjects for better perfor-
ance of inter-subject approaches ( Joshi et al., 2018 ). Besides, whether

hese data-driven approaches are suitable for analysing event-related
esigns remains to be tested. 

Third, the performance of phenotype prediction achieved up to
 = 0.30 in our study, while larger r values have been reported by previ-
us studies. Such a difference may be a consequence of various factors,
uch as the relatively small size of our sample, whether and how con-
ounding variables are controlled for, whether and how data leakage is
ealt with (e.g., controlling for family structure of the HCP samples) and
he complexity of machine learning models (e.g., linear regression vs.
eep neural networks). Moreover, we used all ROIs as features for pre-
iction in our main analyses. It is possible that the variance captured
n some ROIs may not reflect the cognitive processes relevant to the
henotype of interest, but rather reflect, for example, the processing of
ow-level features of movie stimuli, such as brightness and audio power
 Finn & Bandettini, 2021 ; Hasson et al., 2008b ). Future work could fur-
her evaluate TOPF (e.g., by using other datasets) and optimise predic-
ive models (e.g., by preserving only phenotype-related features or using
ore advanced models). We also note that we chose to use simple mod-
10 
ls with minimal machine learning steps in this study because our main
im here is to draw attention especially from NV fMRI studies to the
tility of individual differences in evoked brain activity for phenotype
rediction. 

Fourth, we characterised individual differences in brain activity dur-
ng watching each whole movie clip. Actually, brain activity during NV
s highly dynamic and such neural dynamics may also underlie cognitive
rocessing and behaviour ( Betzel et al., 2020 ; Van der Meer et al., 2020 ).
uture work could extend TOPF to capturing individual differences in
 finer temporal scale to pursue a better understanding of the brain-
ehaviour relationships and better prediction performance ( Yang et al.,
020 ). 

Finally, whole-brain parcellations play an important role in TOPF
ecause they can reduce the spatial dimensionality of fMRI data in a bi-
logically meaningful way ( Eickhoff et al., 2018 ) and ease the computa-
ional load for subsequent analyses. As the best-suited parcellations may
ary across different brain states and for answering different research
uestions ( Salehi et al., 2020 ), how different parcellation schemes in-
uence the performance of TOPF needs further investigation. 

.8. Conclusions 

In sum, the TOPF approach presented here provides a simple and in-
uitive tool for studying individual differences in evoked brain activity
nd their behavioural relevance. Essentially, TOPF highlights the value
f investigating whole-brain evoked activity topographies and applying
achine learning tools for understanding brain-behaviour relationships

n NV fMRI data. Although in this study we only test TOPF on healthy
articipants, this principled and flexible approach should be readily
dapted for clinical applications. We envision that TOPF will provide
 powerful tool for not only predicting symptom severity or clinical out-
omes but also identifying potential biomarkers in clinical neuroscience
tudies. 

. Materials and Methods 

.1. Datasets 

All participants used in this study were from the HCP S1200 release
 Van Essen et al., 2013 ). Informed consent was obtained from all partic-
pants and data acquisition was approved by the Washington University
nstitutional review board. An overview of all data used in this study can
e found in Tables S1 and S2. Detailed acquisition protocols and study
esigns can be found elsewhere ( Barch et al., 2013 ; Van Essen et al.,
013 ). 

Dataset1 was from the HCP “100 Unrelated Subjects ” subset
n = 100; age range: 22-36 years; mean age = 29.11 ± 3.68 years; 54
emales/46 males) of the full HCP dataset. This subset was selected
ecause it contained only unrelated subjects, which straightforwardly
voided the possible bias from the genetic relatedness in the full HCP
ataset. All subjects were scanned on a 3T Siemens scanner (TR = 720
s, TE = 33.1 ms, resolution = 2.0 mm 

3 ). Each subject was required
o complete seven different tasks during the scan in two fMRI sessions,
nd each task was performed in two runs with different phase-encoding
irections. Among these tasks, we chose the motor task and the social
ognition (social) task as two representative tasks because they tapped
nto two different levels of the brain functional hierarchy: whereas the
otor task mainly involved simple movements of body parts, the social

ask involved one higher-order cognitive function of the brain, i.e., the
heory of mind ability. For both tasks, we limited our analysis to the
ata from the first run (with right-to-left phase encoding). The scan du-
ation was 3’34 ” (284 TRs) for the motor task and 3’27 ” (274 TRs) for
he social task. 

Dataset2 was from the HCP 7T subset (n = 184; age range: 22-36
ears; mean age = 29.43 ± 3.35 years; 112 females/72 males). Subjects
n dataset2 contained twins and siblings from 93 unique families. This
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ubset included all available subjects in the full HCP dataset that had NV
MRI data. Each subject underwent four NV fMRI runs in two sessions
n a 7T Siemens scanner (TR = 1000 ms, TE = 22.2 ms, resolution = 1.6
m 

3 ). Each run lasted approximately 15 mins, where subjects were pre-
ented with a sequence of different short movie clips (4-5 clips) inter-
eaved with 20 s rest blocks. Detailed descriptions of the movie clips
ave been published elsewhere ( Finn & Bandettini, 2021 ). In this study,
e limited our analysis to the NV fMRI data from the first run because

he movie stimuli used in the other three runs had slight differences in
iming across subjects, which may potentially affect the results. More-
ver, only the movie clips over 3 mins from the first run were anal-
sed, resulting in three movie clips: “Two Men ” (Movie1), “Welcome
o Bridgeville ” (Movie2), and “Pockets ” (Movie3). Their scan durations
ere 4’04 ” (244 TRs), 03’41 ” (221 TRs) and 03’08 ” (189 TRs), respec-

ively. 
Apart from the NV fMRI data, task-based and RS fMRI data of all

ubjects in dataset2 were also included in our analysis for comparison.
ll task-based fMRI images were acquired on a 3T Siemens scanner with

he same protocols as described above for dataset1. Only the data of
he motor (3’34 ”), social (3’27 ”), and language tasks (3’57 ”) from the
rst run (with right-to-left phase encoding) were included. The RS fMRI

mages were acquired before the NV fMRI run we used in this study
n the same session on a 7T Siemens scanner with the same imaging
arameters as described above. The scan duration of the RS fMRI run
as 15 mins (900 TRs). 

A total of 8 different behavioural phenotypes, covering fluid intel-
igence, working memory, personality and emotion recognition were
tudied here. Each phenotype was measured by a single summary score
or each subject (fluid intelligence: “PMAT24_A_CR ”, working memory:
ListSort_Unadj ”, openness: “NEOFAC_O ”, agreeableness: “NEOFAC_A ”,
onscientiousness: “NEOFAC_C ”, extraversion: “NEOFAC_E ”, neuroti-
ism: “NEOFAC_N ”, and emotion recognition: “ER40_CR ”). Descriptive
tatistics of these 8 measures and their respective behavioural tests are
rovided in Table S2. Detailed descriptions of the tests to measure these
henotypes can be found elsewhere ( Barch et al., 2013 ). Five subjects
ere excluded due to the lack of the complete fMRI and behavioural data
entioned above, resulting in a total of 179 subjects (108 females/71
ales) for dataset2. 

.2. fMRI data preprocessing 

All 3T task-based fMRI images were preprocessed with the HCP min-
mal preprocessing pipeline ( Glasser et al., 2013 ), which includes gra-
ient unwarping, motion correction, spatial normalisation to the Mon-
real Neurological Institute (MNI) space and intensity normalisation. We
urther preprocessed these images by regressing out Friston’s 24 head
otion parameters ( Friston et al., 1996 ), as well as the mean time se-

ies of white matter and cerebrospinal fluid and the linear trend, us-
ng the Data Processing and Analysis for Brain Imaging (DPABI) tool-
ox ( Yan et al., 2016 ) ( http://rfmri.org/dpabi ) in Matlab R2019a. All
T NV and RS fMRI images were preprocessed with the standard HCP
ipelines ( Glasser et al., 2013 ), including correction for distortion and
otion, registration to the MNI space, high-pass filtering, removal of 24
otion parameters and FIX-denoising ( Salimi-Khorshidi et al., 2014 ).
he first 10 volumes of the NV fMRI data were discarded for obtaining
table signals for each movie clip separately. For all the NV, task-based
nd RS fMRI images, the whole brain was divided into 268 ROIs us-
ng a functionally defined parcellation ( Shen et al., 2013 ) that has been
idely applied to the HCP dataset. The parcellation was resampled to
atch the spatial resolutions of the corresponding fMRI images. Within

ach ROI, the mean time series over all voxels was extracted and z-score
ormalised (i.e., zero-mean with unit-variance) for each subject. Head
otion was measured by the relative root-mean-square framewise dis-
lacement (RMS-FD; “Movement_RelativeRMS_mean.txt ”) for each sub-
ect and each fMRI paradigm. The RMS-FD values of all subjects from
11 
ll these fMRI paradigms were less than 0.5 mm, and thus no subject
as further excluded from the analysis. 

.3. TOPF: Identification of shared responses and individual-specific 

opographies 

The first step of TOPF is to delineate individual stimulus-evoked
rain activity patterns across ROIs from NV fMRI data in a data-driven
anner. For NV fMRI signals, it is often assumed that, in each brain re-

ion, for a given subject 𝑖 , the observed fMRI time series 𝑥 𝑖 consists of
hree time series components ( Nastase et al., 2019 ): 

 𝑖 ( 𝑡 ) = 𝑐 ( 𝑡 ) + 𝑖𝑑 𝑖 ( 𝑡 ) + 𝜀 𝑖 ( 𝑡 ) (1)

here 𝑐 is a stimulus-evoked component that is shared across all subjects
denoted as shared response), 𝑖𝑑 𝑖 is also stimulus-evoked but unique to
ach individual (denoted as idiosyncratic response), 𝜀 𝑖 is the residual
epresenting the other signal components, and 𝑡 is a specific time point.
owever, it is usually difficult to identify the 𝑖𝑑 𝑖 s and later link them to
ther known aspects of the individuals (e.g., behavioural performance
r personal traits). To represent individual differences in these stimulus-
voked responses, recent studies have modified the formulation as fol-
ows ( Finn et al., 2020 ; Di & Biswal, 2022 ): 

 𝑖 ( 𝑡 ) = 𝑐 ( 𝑡 ) + 𝛽𝑖 𝑖𝑑 ( 𝑡 ) + 𝜀 𝑖 ( 𝑡 ) . (2)

This formulation is based on an assumption that there is some con-
istent response, 𝑖𝑑, across subjects and it is expressed differently across
ndividuals by 𝛽𝑖 . Note that 𝑖𝑑 and 𝑐 in this equation is interchange-
ble as they both represent some consistent response across subjects.
ctually, it is possible that there are multiple consistent responses un-
erlying the brain activity across subjects. Therefore, in this study, we
urther modify the formulation as: 

 𝑖 ( 𝑡 ) = 𝛽𝑖 1 𝑐 1 ( 𝑡 ) + 𝛽𝑖 2 𝑐 2 ( 𝑡 ) + …+ 𝛽𝑖𝑘 𝑐 𝑘 ( 𝑡 ) + 𝜀 𝑖 ( 𝑡 ) , (3)

here each 𝑐 𝑗 is a consistent response across subjects, which we refer to
s a shared response. Each scaler 𝛽𝑖𝑗 represents the individual-specific
xpression (IE) level of 𝑐 𝑗 for subject 𝑖 . That means, we define a set of
ommon bases ( 𝑐 𝑗 ) across subjects to reflect the stimulus-evoked brain
ctivity and summarise individual differences therein as the IE values
f each 𝑐 𝑗 , i.e., 𝛽𝑖𝑗 . 

In this work, we applied PCA to identify the shared responses 𝑐 𝑗 and
heir corresponding IE values of each subject 𝛽𝑖𝑗 for each ROI separately.
pecifically, for each ROI, we first constructed a data matrix of prepro-
essed fMRI time series across subjects, 𝑋 = [ 𝑥 1 , 𝑥 2 , ..., 𝑥 𝑛 ] ∈ 𝑅 

𝑑×𝑛 , where
 is the number of subjects, 𝑑 is the number of time points, and 𝑥 𝑖 is the
-score normalised time series for subject 𝑖 . A PCA was then performed
n 𝑋, where the subjects were treated as variables and the time points
s samples. The data matrix 𝑋 of each ROI can be written as: 

 = 𝐶 𝑊 

𝑇 , (4)

here each column, 𝑐 𝑗 , of 𝐶 = [ 𝑐 1 , 𝑐 2 , ..., 𝑐 𝑝 ] ∈ 𝑅 

𝑑×𝑝 , denotes the 𝑗-th PC
cores across time, each column, 𝑤 𝑗 , of 𝑊 = [ 𝑤 1 , 𝑤 2 , ..., 𝑤 𝑝 ] ∈ 𝑅 

𝑛 ×𝑝 , de-
otes the weights of the 𝑗-th PC across subjects, and 𝑝 denotes the total
umber of PCs. These PCs are ordered according to the amount of vari-
nce they explain and 𝑐 1 explains the largest amount of variance. The
ime series of subject 𝑖 ( 𝑥 𝑖 ) can thus be represented as: 

 𝑖 = 𝑤 𝑖 1 𝑐 1 + 𝑤 𝑖 2 𝑐 2 + …+ 𝑤 𝑖𝑝 𝑐 𝑝 , (5)

here 𝑤 𝑖𝑗 represents the weight of subject 𝑖 in PC 𝑗. We assume that
he larger amount of variance a PC captures, the more likely it reflects
 meaningful shared response. Therefore, we considered only the first
ew PCs that explain the largest amount of variance as shared responses
or subsequent analyses. The IE value of PC 𝑗 in subject 𝑖 , 𝛽𝑖𝑗 , was op-
rationalised as the loading of 𝑐 𝑗 onto 𝑥 𝑖 , which is equivalent to the PC
eight 𝑤 𝑖𝑗 multiplied by the square root of the eigenvalue of 𝑐 𝑗 . This
rocedure was repeated for each ROI separately. Finally, for each sub-
ect, we collected the PC loadings of that subject across all ROIs to reflect

http://rfmri.org/dpabi
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 brain activity pattern specific to that subject, a construct we refer to
s individual-specific topography. PCA was implemented in Python us-
ng the “sklearn.decomposition.PCA ” function in the scikit-learn package
 Pedregosa et al., 2011 ) ( https://scikit-learn.org/stable/ ). 

.4. Validation of TOPF for identifying task-evoked activity 

The validity of TOPF in capturing stimulus-evoked activity was as-
essed on dataset1, which contained fMRI data of two conventional tasks
ith known timing of individual events. We note that as TOPF is a fully
ata-driven approach, it does not rely on information of the event struc-
ure of the tasks; instead, TOPF derives the topography and the temporal
rofile of shared responses across the whole scan of each task. 

For each task, we applied a PCA to each ROI separately. We con-
tructed a group-level topography across ROIs by using the variance ex-
lained by the PC1 time series to reflect group-level “activation ” evoked
y the task. This topography was then compared against a group-level,
ask-evoked activation (z-score) map derived by GLM by Pearson’s corre-
ation. The GLM-derived map was provided by the HCP and downloaded
rom NeuroVault ( Gorgolewski et al., 2015 ) ( https://neurovault.org ).

e then conducted similar analyses at an individual-subject level. For
ach subject, the TOPF-derived individual-specific topography (i.e., PC1
oadings across all ROIs) was compared to the GLM-derived activation
ap of the given subject (available from the HCP) by Pearson’s corre-

ation. The amount of captured individual differences was quantified
or each approach by between-subject correlations. Note that the GLM-
erived activation maps were initially generated for each experimental
ondition separately (e.g., left-hand movement or tongue movement),
hereas the TOPF-identified topographies reflected the overall brain
ctivity across all experimental conditions within a task. Therefore, be-
ore each comparison, we aggregated the GLM-derived activation maps
cross all experimental conditions by computing the maximum of the
bsolute activation values for each voxel in FSL ( Jenkinson et al., 2012 )
 http://fsl.fmrib.ox.ac.uk/fsl ) and then averaged over all voxels within
ach ROI. 

We next evaluated how well the detected PC1 time series reflected
timulus-evoked activity temporally for each ROI separately. Specifi-
ally, for each experimental condition 𝑖 , we modelled a canonical re-
ponse ( ̂𝑐 𝑖 ) by convolving the timing of the relevant events with the
anonical HRF as implemented by the “spm_hrf.m ” function of the Sta-
istical Parametric Mapping (SPM) software ( Penny et al., 2011 ) with
efault settings in Matlab R2019a. For each ROI, we then combined
hese canonical responses across all experimental conditions with the
LM-derived activations of the given ROI in these conditions as weights:

 

𝑗 ( 𝑡 ) = 

∑

𝑖 

𝑧 
𝑗 
𝑖 
⋅ 𝑐 𝑖 ( 𝑡 ) (6)

here 𝑦 𝑗 ( 𝑡 ) denotes the combined model of ROI 𝑗 at time point 𝑡 and
 

𝑗 
𝑖 

denotes the GLM-derived activation of ROI 𝑗 in task condition 𝑖 . Cor-
espondence between the detected PC1 time series and the combined
odel 𝑦 𝑗 was measured by Pearson’s correlation for each ROI 

.5. Stability analysis of shared responses 

The stability of the TOPF-derived shared response time series across
ifferent subsamples was evaluated on the NV fMRI data in dataset2.
or each movie clip, we varied the sample size (number of subjects, 𝑛 )
f the input fMRI data matrix from 10 to 90 with a step size of 20 and
reated 100 different subsamples for each sample size. Only unrelated
ubjects were included in the same subsample to avoid possible bias
rom the family structure of the dataset. The stability was first evalu-
ted for each ROI separately at each value of 𝑛 by computing the mean
earson’s correlation coefficient of the derived PC1 time series across all
airs of subsamples. Given that the derived PC1s may be sign-flipped for
ome subsamples, we used the absolute correlation value to reflect the
12 
imilarity of any two PC time series. The stability was then averaged
ver all ROIs to reflect the overall stability across the whole brain. 

.6. Evaluation of individual differences captured by individual-specific 

opographies 

The ability of TOPF to capture individual differences was assessed by
he between-subject similarity of individual-specific topographies (i.e.,
C1 loadings across ROIs). The topography was derived by TOPF for
ach subject on each subsample (as described previously) of the NV fMRI
ata at 𝑛 = 90 . The between-subject similarity in these topographies was
omputed by using Pearson’s correlation for each pair of subjects within
ach subsample for each movie clip separately. Intersubject variability
n brain activity was also quantified for each ROI separately as the stan-
ard deviation of its PC1 weights. Note that here we used PC1 weights
or a fair comparison across different ROIs instead of PC1 loadings. Like-
ise, the within-subject similarity was computed by Pearson’s correla-

ion coefficient of the topographies between each pair of movie clips for
ach subject within each subsample separately. The cross-movie stabil-
ty of the pattern of the PC1 loadings across all subjects was computed
y using Spearman’s correlation for each ROI and each pair of movie
lips on each subsample separately. 

.7. TOPF: Phenotype prediction 

The second step of TOPF is to investigate the behavioural rele-
ance of the identified individual-specific topographies under a ma-
hine learning-based predictive framework. fMRI data from three NV
aradigms and three tasks in dataset2 were used to predict eight dif-
erent phenotypes separately to evaluate the predictive framework. In
his study, we used a ridge linear regression model for the prediction.

e chose this particular model because it is simple and has been shown
o achieve robust performance in various neuroimaging studies ( Cui &
ong, 2018 ; Tian & Zalesky, 2021 ). We note that other prediction mod-
ls could also be used within TOPF in general. 

Prediction models were trained in a 10-fold cross-validation (CV)
cheme. Specifically, all subjects ( 𝑛 = 179 ) were randomly divided into
0 groups of roughly the same size. To account for the family structure of
ataset2, subjects from the same family were ensured to be all included
n either the training set or the test set for each fold. In each fold, one
roup was held out for testing, with subjects from the other groups being
sed for training. Each group was used for testing once and only once.
n each fold, the training set was used to train a prediction model, where
or each subject all IE values (PC1 loadings) in the individual-specific
opography were used as features, resulting in a 1 × 268 feature vector.
ach feature was then z-score normalised. 

We note that to avoid information leakage from the test to the train-
ng set, test subjects were totally separated from training subjects during
oth the feature extraction and phenotype prediction phases. Instead of
dding test subjects to the training sample and redoing PCA, the com-
utation of features of test subjects was separate from that of training
ubjects. Specifically, for each test subject, each feature was computed
s the Pearson’s correlation coefficient between that subject’s fMRI time
eries and the PC1 time series which was previously derived on the train-
ng set of a given ROI. We note that in PCA, a PC loading of a vari-
ble (i.e., a training subject in our case) is mathematically equivalent
o the Pearson’s correlation coefficient between this original variable
nd the new variable (i.e., the PC) ( Kanti et al., 1979 ). Therefore, the
eatures of both training and test subjects are computed by comparing
o the same group-level templates (i.e., the PCs learned on the train-
ng sample), thus ensuring their comparability. For each training set,
he optimal regularisation parameter 𝜆 of ridge regression was deter-
ined by an inner 5-fold CV from 12 values [ 2 −5 , 2 −4 , ..., 2 6 ]. The whole
ipeline was implemented in Python using the scikit-learn and julearn
ackages ( https://juaml.github.io/julearn/main/index.html ). For each

https://scikit-learn.org/stable/
https://neurovault.org
http://fsl.fmrib.ox.ac.uk/fsl
https://juaml.github.io/julearn/main/index.html
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MRI paradigm-phenotype combination, the above procedure was re-
eated 10 times with different groupings of subjects. 

For each computation, prediction performance was measured by the
earson’s correlation coefficient between the predicted and the observed
henotypic scores across all subjects and all 10 folds. To control for the
nfluence of head motion (measured by the RMS-FD values), age and sex,
e regressed out these confounds from both the observed and predicted

cores and computed the correlation of the two residuals. The correla-
ion was then averaged over the 10 repetitions. Permutation tests with
000 iterations were used to assess whether the obtained result was sig-
ificantly higher than the chance level ( Dinga et al., 2020 ). For each
teration, features were randomly shuffled across subjects with the orig-
nal orders of the confounds and observed scores being kept. A correla-
ion coefficient between predicted and observed scores was computed
n the permuted data for each iteration and collected across all itera-
ions to construct the null distribution. A p-value was then obtained by
omputing the proportion of iterations for which the true correlation
as higher than that on the non-permuted data. The prediction per-

ormance of TOPF was further evaluated (i) without confound removal
nd (ii) using leave-one-out CV. Additionally, to rule out the impact of
can length, we further evaluated the prediction performance of TOPF
fter truncating all fMRI data to the same length. All NV fMRI data were
runcated to the length of the shortest movie (Movie3), roughly 3 mins
179 TRs), by removing the last few TRs of each data. Similarly, all task
MRI data were also truncated to the length of 3 mins (250 TRs). Pre-
iction performance was recalculated on the truncated data using the
ame procedure as described above. 

.8. Comparisons with FC-based prediction approaches 

Three commonly used FC-based prediction approaches, including the
hole-brain connectome-based prediction (WConn), nodal connectivity

trength-based prediction (NConn), and connectome-based predictive
odelling (CPM) ( Shen et al., 2017 ), were compared with TOPF to fur-

her evaluate the utility of TOPF for phenotype prediction. Apart from
he six fMRI paradigms (three NV paradigms and three tasks), we fur-
her included RS fMRI data of all the subjects in dataset2 (as described
bove). For each subject and each fMRI paradigm, we computed the
C as the Pearson’s correlation coefficient of the fMRI time series for
ach pair of ROIs separately, resulting in a total of eight 268 × 268 con-
ectivity matrices for each subject. Each correlation coefficient was then
isher z-transformed. For WConn, we extracted the upper triangle of the
onnectivity matrix without the diagonal as features, yielding a total of
5778 features (connections) for each subject and each fMRI paradigm.
or NConn, we computed the node strength for each ROI separately,
hich is defined as the sum of the absolute values of the connectivities
etween the given ROI and all the other ROIs, resulting in a total of 268
eatures (ROIs) for each subject and each fMRI paradigm. The WConn
nd NConn features were then used to predict fluid intelligence, work-
ng memory, openness and emotion recognition on each fMRI paradigm
eparately by repeating the same prediction pipeline as used in TOPF.
PM uses a linear regression model and applies an additional feature se-

ection step in each fold, where only the features (i.e., connections) that
re correlated with the phenotype to be predicted are preserved. The se-
ected features are then grouped into two groups according to whether
hey are positively and negatively correlated with the phenotype and
he sum over all features within each group is then used as a feature
or further steps ( Shen et al., 2017 ). We used a correlation threshold of
r| = 0.2 for feature selection as used in a previous study ( Finn & Ban-
ettini, 2021 ). Code for implementing CPM was also adapted from that
tudy ( Finn & Bandettini, 2021 ). Prediction performance of CPM was
lso evaluated via 10 repetitions of a 10-fold CV. Comparisons between
ethods were conducted by using corrected resampled paired t-tests

ver scores of all CV folds and repetitions ( Nadeau & Bengio, 2003 ). 
13 
.9. Identification of phenotype-related brain regions 

Permutation feature importance ( Breiman, 2001 ) was computed for
ach ROI in each fMRI paradigm-phenotype combination with signifi-
ant predictions separately. Specifically, for each successful combina-
ion, we collected the models fitted on the training sets across all CV
olds and all repetitions, resulting in a total of 100 models. For each ROI
nd each model, we randomly shuffled the observations of the given
OI in the test set and recomputed the prediction performance. After
epeating the procedure 100 times, the importance of each ROI in the
iven model was then quantified as the decrease in prediction perfor-
ance (i.e., the difference between the true performance and the per-

ormance derived on the permuted test set), averaged across the 100
terations. This analysis was implemented in Python using the “permu-

ation_importance ” function in the scikit-learn package. Finally, for each
uccessful fMRI paradigm-phenotype combination, a right-tailed, one-
ample permutation test ( Manly, 2007 ) with 5000 iterations was used
o identify the ROIs for which the importance values over all the mod-
ls were significantly larger than zero (corrected 𝑝 < 0 . 05 ). The correc-
ion for multiple comparisons was performed against a null distribu-
ion of the maximum value across all ROIs in each iteration ( Nichols
 Holmes, 2002 ). We note that in this study we used the permutation

eature importance instead of the feature weights (i.e., regression coef-
cients) to identify the predictive features because the latter are known
o have certain limitations in their interpretability ( Haufe et al., 2014 ;
ian & Zalesky, 2021 ). The similarity of the spatial patterns of the iden-
ified predictive ROIs between fMRI paradigms was computed by the
accard similarity index for each pair of fMRI paradigms with signifi-
ant predictions for each phenotype separately. 

.10. Selection of PCs for TOPF 

The statistical significance of each PC time series derived by
OPF was evaluated by using a conservative permutation test ( Di &
iswal, 2022 ). This analysis determined whether the amount of vari-
nce explained by each PC time series exceeded chance level. Specifi-
ally, for each ROI, we permuted the input fMRI data matrix 𝑋 by ap-
lying circular shifting. The fMRI time series of each subject was shifted
ith a random time interval so that the fMRI time series across subjects
ere mismatched in time while the autocorrelation structure of each

MRI time series was preserved ( Kauppi et al., 2010 ). Next, a PCA was
pplied to the permuted data matrix and the procedure was repeated
0000 times. A null distribution was then constructed by collecting the
ariance explained by PC1 from the 10000 iterations. The p-value of
ach PC of the given ROI was determined as the proportion of itera-
ions on which the explained variance was larger than the true variance
xplained by the PC. 

In addition to using PC1 loadings, prediction performance of TOPF
as further evaluated by using PC2 loadings (268 features) and the

ombination of PC1 and PC2 loadings (268 ∗ 2 features; PC1 + 2) as fea-
ures, together with five different thresholds of explained variance (0%,
%,5%,7%,10%), resulting in a total of 15 different settings. In each
V fold, only the features for which the corresponding PC time series
xplained a larger amount of variance than the threshold were used in
urther steps for phenotype prediction. All the other procedures were
he same as described in Section 4.7 . 
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