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Abstract

Functional magnetic resonance imaging (fMRI) during naturalistic viewing (NV) provides exciting
opportunities for studying brain functions in more ecologically valid settings. Understanding
individual differences in brain functions during NV and their behavioural relevance has recently
become an important goal. However, methods specifically designed for this purpose remain
limited. Here, we propose a topography-based predictive framework (TOPF) to fill this
methodological gap. TOPF identifies individual-specific evoked activity topographies in a data-
driven manner and examines their behavioural relevance using a machine learning-based
predictive framework. We validate TOPF on both NV and task-based fMRI data from multiple
conditions. Our results show that TOPF effectively and stably captures individual differences in
evoked brain activity and successfully predicts phenotypes across cognition, emotion and
personality on unseen subjects from their activity topographies. Moreover, TOPF compares
favourably with functional connectivity-based approaches in prediction performance, with the
identified predictive brain regions being neurobiologically interpretable. Crucially, we highlight the
importance of examining individual evoked brain activity topographies in advancing our
understanding of the brain-behaviour relationship. We believe that the TOPF approach provides a
simple but powerful tool for understanding brain-behaviour relationships on an individual level

with a strong potential for clinical applications.

Keywords: Naturalistic viewing fMRI; Individual differences; evoked activity; topography;

behavior prediction
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1. Introduction

Functional magnetic resonance imaging (fMRI) during naturalistic viewing (NV), i.e., movie-
watching, has recently emerged as a useful tool for studying brain function. NV fMRI uses
naturalistic stimuli (e.g., movie clips) in the scanner to approximate real-life situations,
overcoming the limited ecological validity of conventional task-based paradigms (Sonkusare et
al., 2019). Such naturalistic stimuli also elicit complex cognitive processes that may not be
observable when using simplified conventional tasks, such as hierarchical memory in processing
unfolding stories (Hasson et al., 2015). Furthermore, NV settings improve subject compliance and
engagement, overcoming the unsystematic noise caused by unconstrained brain states in
resting-state (RS) settings (Vanderwal et al., 2019). While the neural response during NV tends to
synchronise across participants due to exposure to the same stimulus (Hasson et al., 2004),
recent studies have found that it still preserves substantial individual differences (Vanderwal et
al., 2017; Finn et al., 2020). These advantages make NV fMRI promising for exploring individual
differences (Dubois & Adolphs, 2016), particularly in higher-order brain functions and clinical
applications (Eickhoff et al., 2020).

NV fMRI signals can be assumed to contain three components: stimulus-evoked activity,
spontaneous brain activity and noise, among which the stimulus-evoked activity is generally of
primary interest. As the focus of fMRI studies is gradually shifting from groups to individuals, a
fundamental question regarding the stimulus-evoked activity is: why do different individual brains
produce different responses to the same naturalistic stimulus? One practical way to interpret
individual differences in brain measures is to link them to individual behavioural measures
(Dubois & Adolphs, 2016). Recent studies have found that individual differences in neural
response to the same naturalistic stimulus are associated with individual differences in not only
behavioural measures related to the presented stimulus but also intrinsic personal traits
(Campbell et al., 2015; Di & Biswal, 2022; Finn et al., 2020; Gruskin et al., 2020).
Methodologically, these studies commonly interpret individual differences in stimulus-evoked
activity by correlating them with individual behavioural measures for each voxel or region of

interest (ROI) separately. However, this approach does not sufficiently uncover the brain-
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behaviour relationship, because it typically only examines the behavioural relevance of a single
voxel or ROI at each time, rather than that of the spatially distributed activity patterns across the
whole brain. Furthermore, it does not ensure the generalisability of the learned brain-behaviour
relationship to unseen data. Therefore, a novel computational framework for understanding
individual differences in neural response during NV fMRI in relation to behaviour is needed.

A predictive framework may be better suited for investigating the brain-behaviour
relationship compared to correlational approaches (Dubois & Adolphs, 2016), as it will allow
making predictions for individual subjects from novel data, which has great practical utility
particularly in clinical settings. It will also provide important insights into the neural substrates of
behaviours and biomarkers of diseases (Rosenberg et al., 2018; Woo et al., 2017). More
importantly, execution of complex brain functions often requires participation of multiple brain
regions. Examining distributed activity patterns facilitates not only the understanding of brain
functional organisation but also mapping between brain function and behaviour (Cohen et al.,
2017; Eickhoff et al., 2018; Gonzalez-Castillo et al., 2012). A predictive framework can open the
door to a wealth of advanced machine learning models, which will enable investigation of the
behavioural relevance of distributed brain activity patterns and identification of more complex
brain-behaviour relationships.

Another important consideration for NV fMRI data analysis is separating stimulus-evoked
activity from other signal components (Simony & Chang, 2020). Traditional general linear model
(GLM)-based approaches have been used to identify the stimulus-evoked activity based on
models of relevant features of presented stimulus (e.g., movie annotations) (Lahnakoski et al.,
2012). These models can be difficult to obtain due to the dynamic and multimodal nature of
naturalistic stimuli. By contrast, data-driven approaches extract the stimulus-evoked signals
without the need of explicit descriptions of the stimulus. They leverage the time-locked nature of

the stimulus across subjects, typically using the temporal variance shared across different



82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

subjects to reflect the stimulus-evoked activity (Nastase et al., 2019). Applications of data-driven
approaches have greatly advanced our understanding of brain function in NV settings.

One commonly used data-driven approach is the intersubject correlation (ISC) method
(Hasson et al., 2004; Nastase et al., 2019), which quantifies the shared variance across subjects
by the correlation of their fMRI time series. However, in individual differences studies,
applications of ISC often focus on the relative similarity of brain activity between subjects, rather
than provide a measure of brain activity of individuals. While more sophisticated data-driven
approaches, such as the shared response model (SRM) (Chen et al., 2015) and hyperalignment
(Haxby et al., 2011), can extract stimulus-evoked signals in individuals, they often target fine-
grained activity patterns within certain brain regions and have high memory and computational
demands. On the other hand, approaches that have been widely used for characterising
individual brain activity patterns on RS fMRI data, such as functional connectivity (FC) and
independent component analysis (ICA), typically concern the interactions among ROls or voxels
rather than the stimulus-evoked activity.

In this study, we propose a novel approach for understanding individual differences and
brain-behaviour relationships on NV fMRI data, called topography-based predictive framework
(TOPF). TOPF consists of two components: (i) identifying individual evoked activity topographies
across all ROls in a data-driven manner, and (ii) examining their relationship with individual
behaviour via machine learning-based prediction. Specifically, TOPF applies a principal
component analysis (PCA) to each ROI separately to identify stimulus-evoked activity time
courses shared across subjects by principal components (PCs). Subject-wise PC loadings
thereby reflect the expression levels of these shared time courses specific to each subject. The
activity topography for each subject is then characterised by the pattern of these PC loadings
across all ROls, termed individual-specific topography (Fig. 1). These topographies intuitively

delineate the unique patterns of how strongly each subject’s brain activity follows the shared
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stimulus-evoked activity across the whole brain. A machine learning-based predictive framework
is then employed to predict individual behavioural phenotypes based on these topographies.

Capitalising on fMRI data of multiple NV and task-based paradigms from the human
connectome project (HCP) (Van Essen et al., 2013), we first show that TOPF can effectively and
stably identify stimulus-evoked responses and capture meaningful individual differences therein in
a data-driven way. Next, we show that TOPF successfully predicts phenotypes across cognition,
emotion and personality on unseen subjects based on their activity topographies. Additionally, we
show that prediction performance of TOPF is similar to and mostly better than that of three
popular FC-based approaches. Finally, we localise brain regions that are most predictive of the
phenotypes and show that the prediction models learned by TOPF provide promising

interpretability.
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Figure 1. Schematic of TOPF for identifying shared responses and individual-specific topographies.
(A) For each subject, the whole brain is parcellated into distinct functionally defined ROls and the fMRI
BOLD time series averaged across voxels within each ROl is extracted. (B) For each ROI, the extracted
fMRI time series is z-score standardised, collected across all subjects and then subjected to a PCA. (C) The
resultant PCs and PC loadings of each ROI represent the shared response time series and individual-
specific expressions (IEs), respectively. Here, we only plot the first PC (PC1) that explains the largest
amount of variance for each of these example ROls for illustration. (D) The pattern of the PC loadings of

each subject across all ROls is defined as an individual-specific topography (e.g., marked by the black box).
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2. Results

We used two datasets from the HCP (dataset1, n = 100; dataset2, n = 179; see Tables S1 and
S2 for an overview), covering fMRI data from three NV, three task and one RS conditions and
eight behavioural phenotypes, to evaluate the TOPF approach. Detailed descriptions of the
datasets and methodology of TOPF can be found in section 4 “Materials and Methods”. In this

section, we introduce several key concepts in TOPF and then report the results of our analyses.

2.1 TOPF identifies shared responses and individual-specific topographies

The first step in TOPF is to identify individual stimulus-evoked activity patterns across ROls.
Broadly, this step is built on an assumption that the observed NV fMRI time series in each ROI
contains a stimulus-evoked component, such that it is shared but expressed with different
intensities across individuals (Di & Biswal, 2022; Finn et al., 2020). In this study, this time series
component and its expression level for each subject are termed shared response and individual-
specific expression (IE), respectively. The pattern of the IE values across ROIs for each subject is
what we refer to as individual-specific topography. Such individual-specific topographies will be
later used as features for phenotype prediction.

Aiming at individual topographies of a reasonable resolution rather than the fine-grained
patterns across voxels, we parcellated the whole brain into 268 functionally defined ROls (Shen
et al., 2013) and computed the fMRI time series averaged over voxels within each ROI (Fig. 1A).
This reduced the spatial dimensionality of fMRI data, thereby the computational load, and
increased the signal-to-noise ratio. TOPF uses PCA to identify the shared response and IEs. For
each ROI separately, the voxel-averaged fMRI time series of all subjects were subjected to a
PCA after z-score normalisation, where dimensionality reduction was performed on the subject
dimension rather than the temporal dimension of the fMRI data (Fig. 1B). The shared response
and IEs for each ROI are represented by the detected PC time series and the subject-wise PC
loadings, respectively (Fig. 1C). The individual-specific topography of each subject is
operationalised as the pattern of that subject’'s PC loadings across all ROls (Fig. 1D). As the first

PC (PC1) captures the largest temporal variance shared between subjects across the duration of
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the scan, we assume that PC1 is most likely to reflect the shared stimulus-evoked activity. In the
main text we will mainly focus on PC1-based results (see results for the later PCs in
Supplementary Information). Results on how different choices of the number of PCs influence

prediction performance are shown in Section 2.8.
2.2 TOPF effectively identifies task-evoked activity

We used dataset1, containing task-based fMRI data of 100 unrelated subjects, to evaluate the
validity of TOPF in identifying stimulus-evoked activity. Two representative tasks of the seven
HCP tasks (Barch et al., 2013) that tapped into two different levels of the hierarchy of brain
function, i.e., the motor task and the social cognition (social) task, were used for the evaluation.
Task-based fMRI data were used because the availability of the temporal structure of these
conventional tasks permitted the application of GLM, which is expected to accurately identify
task-evoked activations, thus providing a “ground truth” to evaluate TOPF (Pajula et al., 2012).
For each task, a PCA was applied to the time series across the whole task of each ROI
separately and the resulting PC1 time series was considered as a shared response of the
respective ROI.

We first evaluated the validity of the spatial pattern of evoked activity captured by TOPF.
It is assumed that any variance shared across subjects comes from processing the same
stimulus or performing the same task at the same time (Hasson et al., 2004; Nastase et al.,
2019). Therefore, here we used the variance explained by PC1 to reflect group-level task-evoked
“activation”. A higher amount of variance explained by PC1 indicates a stronger synchronisation
of brain activity across subjects evoked by the task (Di and Biswal, 2022). The map of the
variance explained by PC1 across ROIls was compared against a group-level activation (z-score)
map derived by GLM (Van Essen et al., 2013). The latter was generated by aggregating the
activation maps (i.e., computing the maximum absolute values of the z-scores) across all
experimental conditions. A high Pearson's correlation coefficient (r) between these two maps was
achieved for both tasks (motor: r = 0.72; Fig. 2A; social: r = 0.77; Fig. 2C; both p < ¢~1%). At an
individual subject level, the activity topographies derived by TOPF (i.e., subject-specific PC1

loadings across ROIs) also achieved a moderate correspondence with those derived by GLM
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(motor: r = 0.50 £ 0.15, social: r = 0.64 + 0.09; Fig. S1A and B), with TOPF capturing greater
individual differences (Fig. S1C). These results indicate that the activity topographies derived by
TOPF effectively reflect the spatial patterns of task-evoked activations.
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Figure 2. TOPF identifies stimulus-evoked brain activity on task-based fMRI data. Correspondence
between TOPF-derived topographies and GLM-derived activation maps, measured by Pearson's correlation
coefficient (r), for the motor (A) and social (C) tasks separately at the group level. For TOPF, each value
represents the amount of variance explained by the PC1 time series in the given ROI. For GLM, each value
represents the activation strength (z-score) aggregated across all experimental conditions within each task
(maximum of their absolute values) for the given ROI. The colour from yellow to red indicates the value from
low to high. Correspondence (r) between the detected PC1 time series (blue) and the model used in GLM
(red) for representative ROls marked in circles in (A) and (C) for the motor (B) and social (D) tasks
separately. For GLM, the model of each task is computed as the convolution of the HRF with the temporal
structure of the given task aggregated over all experimental conditions. For TOPF, the results are computed
over the time series across the whole scan of each task. The brain maps are visualised using BrainNet

Viewer (Xia et al., 2013).

The validity of the shared response time series of each ROI was assessed by comparing

it against a combination of models used in GLM using Pearson’s correlation. The latter was
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constructed as the convolution of the timing of the relevant events with a canonical hemodynamic
response function (HRF) aggregated across experimental conditions. For both tasks, a high
correlation coefficient was observed in those strongly activated ROls, such as the left premotor
cortex (related to tongue movement) (Schubotz et al., 2010) for the motor task (r = 0.82; Fig. 2B)
and the right temporoparietal junction (TPJ, related to social cognition) (Van Overwalle, 2009) for
the social task (r = 0.89; Fig. 2D; see Fig. S2 for results across the whole brain). These results
further demonstrate the ability of TOPF for capturing evoked brain activity. Besides, as we

expected, PC1 better reflected task-evoked activity than PC2 and PC3 (Fig. S3).

2.3 Shared responses are stable across subsamples

In TOPF, we assume that a stable identification of the shared responses is essential for a
meaningful characterisation of individual differences (i.e., individual-specific topographies). To
evaluate how the shared responses detected by TOPF change with sample composition and
sample size, we used NV fMRI data of 179 subjects in dataset2, which were acquired while
watching three different movie clips, namely “Two Men” (Movie1), “Welcome to Bridgeville”
(Movie2), and “Pockets” (Movie3). For each ROl and movie clip separately, we measured the
stability of the derived PC1 across 100 different subsamples over a range of sample sizes (n)
from 10 to 90 by using Pearson's correlation. To avoid possible bias from the family structure of
this dataset (Van Essen et al., 2013), no subjects from the same family were included in the same
subsample.

We quantified the overall stability as the mean stability across all ROIs (Fig. 3A). As
sample size increased, the overall stability also increased and achieved a high value for all three
movies with small variability across subsamples at n = 90 (Movie1: 0.90 + 0.01; Movie2: 0.83 +
0.02; Movie3: 0.84 + 0.02). In particular, the stability of the PC1 time series achieved above 0.80
at n = 90 for most ROls in the sensory, frontal and parietal cortices (Fig. 3B; Fig. S4). The overall

stability was much lower for PC2 and PC3 than for PC1 (Fig. S5).
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Figure 3. TOPF stably identifies the shared response time series on NV fMRI data. (A) Stability of PC1
over a range of sample sizes (n) from 10 to 90. The overall stability for PC1 is computed as the stability (i.e.,
the mean absolute value of the Pearson's correlation coefficients of PC1 over all pairs of subsamples)
averaged across all ROIs for each movie clip separately. The error bars depict the standard deviation across
subsample pairs. (B) Stability map of the PC1 time series across the whole brain at n = 90. For each ROI,
the stability is averaged across all three movie clips. The colour from blue to red indicates the stability from

low to high.

2.4 Individual differences can be captured by individual topographies

As TOPF reflects individual differences by IEs of shared responses rather than directly captures
individuals’ idiosyncratic stimulus-evoked brain activity, it is necessary to evaluate whether such
characterisation leaves enough room for individual variation. The individual-specific topographies
derived by TOPF at n = 90 on the NV fMRI data stated above were used for this evaluation (see
Fig. 4A for an illustrative example). For each pair of subjects, we computed their similarity in
individual topographies by Pearson’s correlation (r) within each subsample for each movie clip
separately (Fig. 4B). On average, the between-subject similarity for the three movies achieved
r =047+ 0.14,r = 041+ 0.17, and r = 0.38 + 0.18, respectively. This result demonstrates that
TOPF-derived individual topographies capture a considerable amount of individual differences.
Additional analyses show that these individual differences mainly came from ROlIs beyond the
sensory cortex (Fig. S6).

On the other hand, to understand how individual topographies captured by TOPF change
across movie clips, we computed the within-subject similarity for each subject and each pair of
movie clips on each subsample separately. The mean within-subject similarity () across subjects

and subsamples achieved approximately » = 0.50 for all movie-clip pairs (Fig. 4C). In particular,

11



250
251
252
253

254
255

256
257
258
259
260
261
262
263
264

the pattern of the PC1 loadings over subjects remained relatively stable across movie clips
(Spearman’s correlation r = 0.44 — 0.75; Fig. S7) for the ROls in the sensory cortex (Gao et al.,
2020). These results suggest that these individual topographies may reflect stable personal traits

to a certain degree.
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Figure 4. TOPF captures individual differences by individual-specific topographies on NV fMRI data.
(A) Individual-specific topographies of two representative subjects derived on a randomly selected
subsample (n = 90) for each movie clip separately. The colour from green to red indicates the IE value (PC1
loading) from low to high. Each subject shows a unique spatial pattern of the |IE values while watching the
movie clips. (B) Distribution of the between-subject similarity (Pearson's correlation coefficient, r) in the
individual-specific topographies over all pairs of subjects within each subsample (n = 90) for each movie clip
separately. (C) Distribution of the within-subject similarity (r) in the individual-specific topography over all
subjects within each subsample (n = 90) for each pair of movies separately. The three dashed lines inside
each violin plot from top to bottom denote the third quartile, median and first quartile of the corresponding

distribution, respectively.
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2.5 Individual topographies predict individual phenotypes

The second step in TOPF is to link the identified individual-specific topographies to individual
phenotypes using a machine learning-based predictive framework. We investigated a total of 8
phenotypes across cognition (fluid intelligence and working memory), personality (openness,
agreeableness, conscientiousness, extraversion and neuroticism) and emotion (emotion
recognition). For each phenotype, we used a single summary score as its measure (Table S2).
For prediction of each phenotype, we applied TOPF to fMRI data of 6 different paradigms from
the same cohort of subjects (n = 179; dataset2) separately, including the three NV paradigms
(Movies 1-3) and three conventional tasks of similar scan durations, namely the motor, social,
and language tasks (Table S1). Prediction was performed by using a ridge linear regression
model for its simplicity and robustness. The model was evaluated by a nested 10-fold cross-
validation (CV) procedure with 10 repetitions. In each fold, the model was fitted on the training set
by using the individual-specific topographies (i.e., the PC1 loadings of all ROIs) as features. The
hyperparameter was optimised via an inner 5-fold CV. The fitted model was then tested by
predicting the phenotypes of the test set. To avoid data leakage from the test set to the training
set, features of the test set of each fold were derived based on the shared response learned on
the training set, and subjects from the same family were ensured to stay either in the training or
the test set. Prediction performance was assessed by the Pearson's correlation coefficient (r)
between predicted and observed scores over all subjects after regressing out potential confounds
(age, sex and head motion; Table S3) from both scores (Dinga et al., 2020). Head motion was
measured by the relative root-mean-square framewise displacement (RMS-FD).

The prediction performance was significant for fluid intelligence, working memory,
openness and emotion recognition (permutation-based p < 0.05, 5000 iterations; Fig. 5; see
Tables S4 and S5 for results of all phenotypes). Our subsequent analyses will thus mainly focus
on these four phenotypes. Notably, the prediction performance varied substantially across fMRI

paradigms. For example, working memory and openness were best predicted by Movie2 (r =
0.301-0.04, permutation-based p<0.001) and Movie3 (r = 0.24+0.04, p=0.002), respectively,

whereas fluid intelligence and emotion recognition were best predicted by the language task (r =

13



293  0.2740.04, p=0.001) and social task (r = 0.23+0.02, p=0.002), respectively. Similar results were

294  obtained before confound removal (Table S6), using the leave-one-out CV (Table S7), and after

295  we controlled for the scan length by truncating all fMRI data to 3 mins (Fig. S8).
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297 Figure 5. Performance of TOPF for phenotype prediction. Prediction performance is computed by the
298 Pearson's correlation coefficient (r) between the residuals of predicted (pred_res) and observed scores
299 (obs_res) over all subjects (n = 179) after regressing out sex, age and head motion (RMS-FD). Each box
300 represents results from 10 repetitions of 10-fold CVs of each fMRI paradigm-phenotype combination (box:
301 middle bar, median; upper and lower bars, third and first quartiles; upper and lower whiskers: maximum and
302 minimum). Significant predictions (p < 0.05, evaluated by permutation tests with 5000 iterations) before and

303 after FDR correction are marked by red stars and black stars, respectively. NV and task paradigms are
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marked in red and blue, respectively. Only the phenotypes with significant predictions are shown here (see

Tables S4 and S5 for the complete results). Mot: motor task; Soc: social task; Lan: language task.
2.6 Comparisons with FC-based predictions

To further validate the utility of TOPF for phenotype prediction, we compared TOPF with three
commonly used prediction approaches in fMRI studies that employ different types of FC-based
features. These include whole-brain connectome-based prediction (WConn), nodal connectivity
strength-based prediction (NConn), and connectome-based predictive modelling (CPM) (Finn et
al., 2015; Shen et al., 2017). To facilitate comparisons across methods, ridge regression models
were applied for WConn and NConn. Performance of all the three approaches was evaluated via
the same procedure as used by TOPF.

Overall, TOPF outperformed all the FC-based approaches across the four phenotypes for
all the fMRI paradigms except Movie3 (social: TOPF vs. WConn: p = 0.011, TOPF vs. NConn:
p = 0.001, TOPF vs. CPM: p = 0.049, language: TOPF vs. NConn: p = 0.041, others: p > 0.05,
corrected resampled t-tests (Nadeau & Bengio, 2003); Fig. 6A). For individual phenotypes, TOPF
exhibited better performance than the other approaches for predicting the fluid intelligence,
openness and emotion recognition scores across all fMRI paradigms (openness: TOPF vs.
WConn/NConn: both p = 0.036, others: p > 0.05; Fig. 6B). While the best approach varied across
individual fMRI paradigms and phenotypes, TOPF achieved the best prediction performance for
all the four phenotypes (Fig. S9). Moreover, performance of applying TOPF on NV and task data

also outperformed that of applying the FC-based approaches on RS data (Fig. S10).
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Figure 6. Comparisons between TOPF and FC-based prediction approaches. Each method is evaluated
via 10 repetitions of a 10-fold CV for each fMRI paradigm and phenotype separately. Results averaged (A)
over the four phenotypes and (B) over the fMRI paradigms are shown. Prediction performance is measured
as the Pearson's correlation coefficient (r) between the residuals of predicted (pred_res) and observed
scores (obs_res) after regressing out sex, age and head motion (RMS-FD) over all subjects (n = 179).
Boxes: upper and lower whiskers: maximum and minimum; bars within each box from top to bottom: third
quartile, median and first quartile. Statistical significance between TOPF and each of the other approaches

is examined by using a corrected resampled paired t-test (Nadeau & Bengio, 2003). *: p < 0.05.
2.7 Phenotype-related brain regions

To understand the neurobiological interpretation behind the prediction models obtained by TOPF,
we identified ROIs that were predictive of these phenotypes based on their permutation feature
importance (Breiman, 2001). For each phenotype, we identified the predictive ROIls only for the
fMRI paradigms on which the phenotype was significantly predicted. For fluid intelligence, we
identified a broad range of predictive ROIls, spreading across the frontal, parietal, temporal and
cerebellar cortices (Dubois et al., 2018) (Fig. 7A). For working memory, the identified ROIls were
mainly located in the prefrontal, parietal, medial temporal and cerebellar cortices (Rottschy et al.,
2012) (Fig. 7B). For openness, the identified ROIs were mainly located in the left frontal lobe and

cerebellum (Adelstein et al., 2011) (Fig. 7C). For emotion recognition, the identified ROls were
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mainly located in the right hemisphere, covering the frontal cortex, TPJ and subcortical regions
(Ruffman et al., 2008) (Fig. 7D). Furthermore, different fMRI paradigms exhibited distinct spatial
patterns of predictive ROIs for the same phenotype (Jaccard similarity: 0.02 to 0.10; Fig. 7E).
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Figure 7. Predictive ROIs for each phenotype and fMRI paradigm with significant predictions. (A-D)
The predictive ROIs (marked in red) are identified for each fMRI paradigm with significant predictions (p <
0.05 in Fig. 5) for fluid intelligence (A), working memory (B), openness (C) and emotion recognition (D)
separately. Only the ROls for which the permutation feature importance over all CV folds and repetitions is
significantly larger than zero (permutation-based, corrected p < 0.05, with 5000 permutations) are identified
as predictive ROIs. (E) The similarity in the spatial patterns of the predictive ROls is assessed by the
Jaccard similarity for each pair of fMRI paradigms within each phenotype separately. No result is plotted for

emotion recognition, as only one fMRI paradigm (the social task) achieves a significant result.
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2.8 Impact of different choices of the number of PCs on prediction performance

Our previous analyses of TOPF focused on using PC1 time series as shared responses, as we
assume that PC1 best reflects the stimulus-evoked activity. Here, we further investigate the
impact of different choices of PCs on prediction performance of TOPF. First, we evaluated the
number of significant PCs for each ROI and each fMRI paradigm by using a conservative
permutation test, where the null distribution was built with the amount of variance explained by
PC1 from 10000 permutations (Di & Biswal, 2022; Kauppi et al., 2010); a PC is considered to be
meaningful if the variance explained by it significantly exceeds chance level. For all fMRI
paradigms, most ROIs (237 - 266/268) exhibited a significant PC1 (p < 0.05; Fig. 8A), 2 - 40 ROIs
had a significant PC2, and no ROls had significant results for the later PCs. Therefore, our
following analyses focused on PC1 and PC2.

The variance explained by PC1 varied remarkably across ROls for all the fMRI paradigms
(ranging from 1.6% to 57.0%; Fig. 8B), with the mean across ROIs achieving around 12% for NV
and 8% for task data. ROls for which PC1 explained larger amounts of variance were distributed
in visual, auditory and sensory association cortices for NV paradigms and in task-evoked regions
for task paradigms (Fig. S11). By contrast, PC2 explained around 4% and 3% of the total
variance averaged across ROls for NV and task data, respectively, with the explained variance of
individual ROlIs ranging from 1.6% to 8.4%.

For phenotype prediction, the average performance over all fMRI paradigms was better
for PC1-based than for PC2-based TOPF for all the four phenotypes (Fig. 8C). As the amount of
explained variance may also influence the utility of the PCs for prediction, we additionally
conducted a feature-selection step with five different thresholds of explained variance (0%, 3%,
5%, 7%, 10%). The feature selection was conducted across all ROls for PC1, PC2 and PC1+2
(using loadings of both PC1 and PC2 as features) separately, resulting in 15 different settings.
Overall, prediction performance was improved after feature selection, and the best performance

was achieved in most cases by using PC1- or PC1+2-based prediction (Fig. $S12).
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Figure 8. Comparisons across different choices of PCs for TOPF. (A) Number of ROIs with significant
PCs (N_sig) for each of the first five PCs. Significance of each PC of each ROl is evaluated separately via a
conservative permutation test, where the null distribution is built with the amount of variance explained by
PC1 of the given ROI from 10000 permutations (Di & Biswal, 2022). The p-value threshold here is set to
0.05. (B) Distribution of the amount of variance explained by PC1 and PC2 separately for individual fMRI
paradigms. (C) Prediction performance of PC1- and PC2-based TOPF separately. Each condition is
evaluated via 10 repetitions of 10-fold CVs for each fMRI paradigm and phenotype separately. Results
shown are aggregated across all f/MRI paradigms for each phenotype. Prediction performance is measured
as the Pearson's correlation coefficient (r) between the residuals of predicted (pred_res) and observed
scores (obs_res) after regressing out sex, age and head motion over all subjects (n = 179). Boxes: upper
and lower whiskers: maximum and minimum; bars within each box from top to bottom: third quartile, median

and first quartile; green triangles: means.

3. Discussion

NV settings provide promising opportunities for facilitating our understanding of individual
differences in brain functioning, yet they present new challenges for fMRI data analysis. In this
study, we propose a simple computational framework, TOPF, which allows us to characterise
stimulus-evoked activity topographies in individuals and investigate their behavioural relevance

using machine learning-based predictive modelling. By validating TOPF on both NV and task
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fMRI data, we demonstrate that the individual-specific topographies conceptualised by TOPF
provide a practical characterisation for individual activity patterns during NV. These topographies
also predict multiple behavioural phenotypes and often outperform FC-based features.
Additionally, the learned predictive models provide neurobiologically meaningful interpretations.
TOPF is a generic framework that can be readily adapted for clinical applications, thus holding

great potential for advancing basic and clinical neuroscience studies.

3.1 Data-driven perspective on stimulus-evoked activity

While classic ICA and FC-based approaches are useful for studying individual differences in the
interactions among brain regions, individual differences in brain activity directly driven by the
naturalistic stimulus, that is, the stimulus-evoked activity, might be of more interest for NV fMRI
studies. On the other hand, the utility of GLM-based approaches to capture individual stimulus-
evoked activity on NV fMRI data is limited by their requirement for accurate stimulus descriptions.
Our TOPF approach avoids these issues by identifying stimulus-evoked activity in a data-driven
way. It detects stimulus-evoked time courses shared across subjects for each ROl separately and
characterises individual activity patterns by the individual-specific expression (termed IE) of these
shared responses across ROlIs (termed individual-specific topography).

Similar to GLM, TOPF also defines a (few) consistent response time course(s) across
subjects (TOPF: PC time courses; GLM: predefined regressors) and uses them as a common
basis to estimate individual task/stimulus-evoked activity (TOPF: PC loadings; GLM: regression
coefficients). However, TOPF, as a data-driven approach, does not rely on prior knowledge about
relevant features of the presented naturalistic stimulus for extracting stimulus-evoked signals as
GLM does, thus highly suitable for dealing with fMRI data under NV and possibly other complex
naturalistic conditions. Notably, whereas GLM picks up individual idiosyncrasies by using
predefined models to fit individual fMRI signals, TOPF uses IEs of shared responses to reflect
individual variation. Even so, TOPF still leaves enough room for preserving individual differences.
Moreover, the data-driven nature may allow TOPF to capture unique individual differences that
are not induced by explicitly predefined task designs (Bolt et al., 2018) and thus may not be

detected by GLM. Future work could compare the prediction performance of TOPF and GLM-
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based methods to better understand their differences in the characterisation of individual
differences.

TOPF is also closely related to several existing data-driven approaches for detecting
stimulus-evoked activity. A common rationale behind these data-driven approaches is that any
temporal variance shared across subjects can only originate in the processing of the same
stimulus. For example, the commonly used ISC approach often computes the pairwise or leave-
one-out (LOO) correlation (i.e., correlation between the fMRI time series of a subject and the time
series averaged across the other subjects) to reflect the similarity in brain activity between
subjects (Finn et al., 2020; Nastase et al., 2019). Although similar, PC1 loadings have been
shown in a previous study to be more computationally efficient than the LOO correlations (Di &
Biswal, 2022), thus allowing for more efficient integrations with machine learning models,
especially when the number of subjects/ROls is large. More importantly, TOPF aims to use an
“absolute” expression of a group-level basis to reflect individual activity instead of providing a
relative measure. While SRM (Chen et al., 2015) and hyperalignment (Haxby et al., 2011)
approaches adopt similar logic, they often focus on more fine-grained individual functional
topographies within certain brain regions rather than the whole-brain topographies. Tensor-ICA
(Beckmann & Smith, 2005; Campbell et al., 2015), on the other hand, identifies a set of common
stimulus-evoked spatial components throughout the whole brain and associated time courses,
with individual differences being characterised for each component. By contrast, TOPF
characterises individual variation by ROI, delineating individual topographies across the whole

brain at a resolution suitable for machine learning-based predictions.

3.2 Individual differences in activity topographies evoked during NV

TOPF characterises individual variation by IEs of stimulus-evoked responses that are shared
across subjects rather than directly captures individual idiosyncratic responses. Although the
latter might be conceptually more desirable, we show that the IEs also captured considerable and
meaningful individual differences. These IEs were more variable across subjects in frontoparietal,
limbic, subcortical and default mode network regions than in sensory regions. These results
partially align with previous studies observing higher intersubject variability in FC patterns of brain
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regions associated with cognitive control in both RS (Finn et al., 2015; Laumann et al., 2015;
Mueller et al., 2013) and NV settings (Vanderwal et al., 2017). Moreover, for the sensory regions,
although the intersubject variability was relatively small, patterns of the IEs across subjects were
stable across movie clips and thus less sensitive to the specific movie content. This is in line with
recent studies showing that the way the brain processes complex sensory and social information
during NV may be an intrinsic characteristic of individuals (Gao et al., 2020; Lahnakoski et al.,
2012) and associated with brain baseline functional organisation (Gruskin & Patel, 2022). We
note that further work is needed to assess whether our findings here are generalisable across

different movie types.

3.3 Comparisons across fMRI paradigms for TOPF-based phenotype prediction

NV fMRI paradigms performed better than the conventional task paradigms for predicting working
memory and openness. This result is in line with previous studies discovering significant
relationships between individual differences in brain responses during NV and individual
differences in personality traits and working memory capability by using univariate analyses (Finn
et al., 2018; Finn et al., 2020). The better performance of these NV paradigms suggests that
watching these movies may evoke stronger individual differences relevant to these phenotypes
than performing those strictly-controlled tasks. Such advantages of NV settings may arise from
improved subject compliance and engagement, reduced head motion during the scan (Vanderwal
et al., 2017), as well as presence of brain states and cognitive processes that are uniquely
evoked when processing complex naturalistic stimuli (Finn et al., 2017; Hasson et al., 2015; Van
der Meer et al., 2020).

Different movies showed substantially different prediction performance, with the
observation remaining the same after we controlled for scan (movie) length. When movie length
was shortened, the prediction performance slightly degraded in general but in certain cases was
even improved. These results suggest that movie length may not be a key factor that determines
the utility of a movie for phenotype prediction. The differences in prediction performance across
movies may actually result from various factors rather than purely movie length. For instance,

movies with richer social content tend to evoke greater inter-subject variability in interpretations of
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the movies, thus potentially reflecting stronger behaviourally relevant individual differences (Finn
et al., 2018; Gruskin et al., 2020). Commercial movies can evoke more reliable responses across
subjects than real-life, unedited movies by using professional filmmaking techniques to enhance
audiences’ engagement (Hasson et al., 2010). Furthermore, familiarity with the movies (e.g.,
whether subjects have seen the movie before) may also affect subjects’ interpretations of the
movie (Jaaskelainen et al., 2008), and thus be important to consider when understanding the
evoked individual differences in neural responses. Future work is needed to better understand
which factors and how they influence prediction performance of behaviour in NV settings by using
more movies with different features.

NV fMRI paradigms did not always achieve the best performance for predicting various
phenotypes. For fluid intelligence and emotion recognition scores, the language and social tasks
performed best, respectively. One distinct feature of these two tasks is that their experimental
designs and the brain function they target are closely related to the respective phenotype they
predict. Brain activations of language comprehension and maths processing in the HCP language
task have shown significant genetic correlations with fluid intelligence (Le Guen et al., 2018).
Emotion recognition has been acknowledged as a core aspect of social cognition (Gallese et al.,
2004) and the two brain functions have shown overlapping activations in an fMRI study (Mier et
al., 2010). These findings suggest that the choice of fMRI paradigms for phenotype prediction

should be made individually for each specific research question.
3.4 Comparisons across methods for phenotype prediction

Motivated by the development of machine learning techniques, a growing body of work has
recently applied machine learning predictive models on various brain measures to predict
individual phenotypes (Dosenbach et al., 2010; Finn et al., 2015; Nostro et al., 2018; Weis et al.,
2020). Most brain measures used for phenotype prediction in fMRI studies have so far been
constructed based on FC. In this study, the overall prediction performance of TOPF across fMRI
paradigms and phenotypes was similar to and in most cases better than that of the three popular
FC-based prediction approaches (i.e., WConn, NConn and CPM), demonstrating the validity of

TOPF. More importantly, this result shows that, beyond FC-based brain measures, individual
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differences in evoked responses are also useful for phenotype prediction. Whereas FC depicts
individual differences in interactions between brain regions, TOPF directly captures individual
differences in the activity of each brain region, and thus they may reflect different aspects of brain
function. In fact, previous studies have shown that individual phenotypes can be predicted from
individual differences in brain activations on task fMRI data (Greene et al., 2020; Sripada et al.,
2020), which are computationally different but conceptually similar to the individual differences
captured by TOPF.

For predicting fluid intelligence and openness, TOPF on average outperformed the FC-
based methods. Many previous studies have reliably predicted fluid intelligence and openness
from resting state fMRI data (Smith et al., 2013; Dubois et al., 2018b). Recent evidence has
shown that task- or movie-induced brain states can further improve prediction of these
phenotypes, by amplifying or bringing out relevant individual differences that are unique to the
evoked brain states (Greene et al., 2018; Finn & Bandettini, 2021). These findings may suggest
that TOPF better captured individual differences related to these phenotypes by having a higher
level of focus on the evoked brain signals compared to the FC-based methods. For emotion
recognition scores, neither TOPF nor the FC-based methods achieved a satisfying prediction
performance. This result is consistent with previous findings that emotional traits are in general
harder to predict than cognitive traits (Finn & Bandettini, 2021, Kong et al., 2019). One
explanation could be that individual differences in emotional traits are not effectively reflected by
brain measures in activity and FC. Alternatively, this result may stem from limitations in reliability
and validity of the phenotypic measures (Tiego & Fornito, 2023). For predicting working memory
scores, whether TOPF outperformed the other methods largely depended on the fMRI paradigms.
Previous studies have shown that different tasks or naturalistic stimuli can elicit highly distinct
individual differences and brain states (Finn et al., 2017; Hasson et al., 2008a). For example,
watching certain movie clips has been shown to elicit a unique hierarchical organisation of
working memory (Hasson et al., 2015). On the other hand, activity- and FC-based features may
capture unique and complementary information in individual differences that are useful in different

situations (Di & Biswal, 2019; Tsvetanov et al., 2018). Further investigation is needed to better
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understand the differences across fMRI paradigms and between FC- and activity-based features.
Future work could also consider combining FC- and activity-based features to further improve
prediction performance (Greene et al., 2020).

Computationally, TOPF uses a remarkably smaller number of features (n ROIs) than
approaches using whole-brain connectomes as features (n(n — 1)/2 connections). This feature of
TOPF greatly eases the problem of overfitting and reduces the number of observations (i.e.,
subjects) needed for a meaningful prediction, alleviating the critical problem of relatively small
sample sizes of the current public NV fMRI datasets. Furthermore, different from FC-based
approaches which are often applied to fMRI data of individual subjects, TOPF captures individual
differences via an inter-subject approach. The latter is particularly useful for analysing NV fMRI
data, which separates stimulus-driven responses based on their synchronisation across subjects
(Hasson et al., 2004; Nastase et al., 2019; Simony & Chang, 2020). In TOPF, we use PCA to
detect shared stimulus-evoked responses and their loadings onto subjects’ fMRI signals to reflect
individual differences, which have shown potential for phenotype prediction in a recent study (Di
and Biswal, 2022). It is worth noting that from a computational perspective, TOPF uses PCA to
perform a dimensionality reduction on the subject dimension. This distinguishes our study from
the majority of fMRI studies which use PCA to reduce the dimensions of spatial or temporal
features of fMRI data.

Moreover, there are other inter-subject approaches that could be used for studying
individual differences in brain activity during NV from different perspectives. For example, inter-
subject functional correlation (Simony et al., 2016) can capture stimulus-driven FC profiles of
individuals, while SRM (Chen et al., 2015) and hyperalignment (Haxby et al., 2011) can offer a
more fine-grained representation of individual idiosyncrasies in brain functional topographies. A
recent study has shown that functionally hyperaligned, fine-grained FC profiles can remarkably
improve prediction performance for behaviour on RS and task fMRI data (Feilong et al., 2021).
Future work may also integrate these inter-subject approaches into a machine learning
framework as a preprocessing or feature extraction step for phenotype prediction on NV fMRI

data.
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3.5 Different choices of number of PCs for TOPF-based phenotype prediction

In general, PC1 outperformed PC2-based TOPF for predicting the four phenotypes. This result
fits our expectation that PC1 better reflects shared brain activity across subjects and provides
more reliable grounds for characterising meaningful individual differences than the later PCs.
Furthermore, the performance of TOPF was improved overall when applying a threshold to
preserve only the PCs for which the captured variance exceeded a certain amount. This result
further supports our assumption that PCs capturing larger amounts of variance tend to reflect
more stable and meaningful individual differences by their loadings. However, we also observed
that combining PC1 and PC2-based features can sometimes improve prediction performance.
This result suggests that different PCs may reflect different aspects of a cognitive process, e.g.,
different consistent responses of different subject groups, in particular for clinical and ageing
populations (Byrge et al., 2015; Campbell et al., 2015; Di & Biswal, 2022). Therefore, including
multiple PCs may provide a more comprehensive characterisation of individual differences across

the whole sample and thus benefit behavioural prediction.

3.6 Interpretations of identified phenotype-related brain regions

In addition to good prediction performance, we also expected TOPF to provide good
interpretability so that it can help understand the brain-behaviour relationship. In general, the
predictive brain regions we identified in this study showed overlaps with previous literature. For
example, the ROls identified for fluid intelligence and working memory were mainly located in
brain regions supporting cognitive functions, e.g., frontal and parietal cortices (Jung & Haier,
2007), showing overlaps with findings of previous meta-analytic studies (Rottschy et al., 2012).
The association between the left frontal lobe and the openness personality trait has been
reported by previous studies using conventional task fMRI data and brain structural data
(DeYoung, 2010; Vartanian et al., 2018). The TPJ identified for emotion recognition has been
recognised as a key region for social and emotion processing (Van Overwalle, 2009). These
results demonstrate that TOPF holds great potential for facilitating our understanding of the

neurobiological bases of behaviour. Furthermore, the patterns of predictive ROls identified for
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TOPF varied largely across fMRI paradigms, indicating that different tasks and movies may elicit
unique neural processes related to the same behaviour or phenotype (Geerligs et al., 2015). We
expect that future studies on the important question of whether and how brain function under
naturalistic conditions differs from that measured in strictly controlled task paradigms can be

facilitated by using our approach.
3.7 Limitations and future directions

We note several limitations of this study as well as possible future directions. First, as our interest
in this study focuses on individual differences in evoked brain activity, we only included the first
two PCs that captured the largest amount of variance in our analyses for TOPF. Previous studies
have shown that a low-dimensional representation of brain activity and dynamics can reflect
meaningful individual differences, although such representation may capture only a small part of
the total variance (Misra et al., 2021; Shine et al., 2019). These findings are similar to our result in
this study where the first two PCs on average captured less than 20% the total variance.
However, it may still be interesting for future studies on NV fMRI to explore the remaining
variance, as it contains a large part of individual idiosyncratic information that could potentially be
useful for prediction of phenotypes beyond cognition. Besides, the orthogonality of these PCs
may complicate their interpretations. Other methods, such as non-negative matrix factorisation
(Lee & Seung, 1999), might be used to detect the shared responses in future work for better
interpretability.

Second, although we showed that TOPF can achieve significant performance on both
naturalistic paradigms and conventional tasks, we note that these two are essentially different
from each other. While naturalistic settings use a common, continuous stimulus for all subjects
during the whole scan, tasks often use a block or event-related design. For block-designed tasks,
the exact stimulus content and event onset timing within each block may not always be consistent
across subjects. However, our results in this study demonstrate that TOPF is not interested in
specific events, but rather the performance of the task across the full block. Further investigation
is needed to better understand the temporal variance shared across subjects and individual

differences captured by TOPF as well as other inter-subject approaches. Future work could also
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seek to improve temporal alignment across subjects for better performance of inter-subject
approaches (Joshi et al., 2018). Besides, whether these data-driven approaches are suitable for
analysing event-related designs remains to be tested.

Third, the performance of phenotype prediction achieved up to r = 0.30 in our study, while
larger r values have been reported by previous studies. Such a difference may be a consequence
of various factors, such as the relatively small size of our sample, whether and how confounding
variables are controlled for, whether and how data leakage is dealt with (e.g., controlling for family
structure of the HCP samples) and the complexity of machine learning models (e.g., linear
regression vs. deep neural networks). Moreover, we used all ROls as features for prediction in
our main analyses. It is possible that the variance captured in some ROIls may not reflect the
cognitive processes relevant to the phenotype of interest, but rather reflect, for example, the
processing of low-level features of movie stimuli, such as brightness and audio power (Finn &
Bandettini, 2021; Hasson et al., 2008b). Future work could further evaluate TOPF (e.g., by using
other datasets) and optimise predictive models (e.g., by preserving only phenotype-related
features or using more advanced models). We also note that we chose to use simple models with
minimal machine learning steps in this study because our main aim here is to draw attention
especially from NV fMRI studies to the utility of individual differences in evoked brain activity for
phenotype prediction.

Fourth, we characterised individual differences in brain activity during watching each
whole movie clip. Actually, brain activity during NV is highly dynamic and such neural dynamics
may also underlie cognitive processing and behaviour (Betzel et al., 2020; Van der Meer et al.,
2020). Future work could extend TOPF to capturing individual differences in a finer temporal
scale to pursue a better understanding of the brain-behaviour relationships and better prediction
performance (Yang et al., 2020).

Finally, whole-brain parcellations play an important role in TOPF because they can
reduce the spatial dimensionality of fMRI data in a biologically meaningful way (Eickhoff et al.,
2018) and ease the computational load for subsequent analyses. As the best-suited parcellations

may vary across different brain states and for answering different research questions (Salehi et
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al., 2020), how different parcellation schemes influence the performance of TOPF needs further

investigation.
3.8 Conclusions

In sum, the TOPF approach presented here provides a simple and intuitive tool for studying
individual differences in evoked brain activity and their behavioural relevance. Essentially, TOPF
highlights the value of investigating whole-brain evoked activity topographies and applying
machine learning tools for understanding brain-behaviour relationships on NV fMRI data.
Although in this study we only test TOPF on healthy participants, this principled and flexible
approach should be readily adapted for clinical applications. We envision that TOPF will provide a
powerful tool for not only predicting symptom severity or clinical outcomes but also identifying

potential biomarkers in clinical neuroscience studies.

4. Materials and Methods
4.1 Datasets

All participants used in this study were from the HCP S1200 release (Van Essen et al., 2013).
Informed consent was obtained from all participants and data acquisition was approved by the
Washington University institutional review board. An overview of all data used in this study can be
found in Tables S1 and S2. Detailed acquisition protocols and study designs can be found
elsewhere (Barch et al., 2013; Van Essen et al., 2013).

Dataset1 was from the HCP “100 Unrelated Subjects” subset (n = 100; age range: 22-36
years; mean age = 29.1113.68 years; 54 females/46 males) of the full HCP dataset. This subset

was selected because it contained only unrelated subjects, which straightforwardly avoided the
possible bias from the genetic relatedness in the full HCP dataset. All subjects were scanned on
a 3T Siemens scanner (TR =720 ms, TE = 33.1 ms, resolution = 2.0 mm3). Each subject was
required to complete seven different tasks during the scan in two fMRI sessions, and each task
was performed in two runs with different phase-encoding directions. Among these tasks, we

chose the motor task and the social cognition (social) task as two representative tasks because
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they tapped into two different levels of the brain functional hierarchy: whereas the motor task
mainly involved simple movements of body parts, the social task involved one higher-order
cognitive function of the brain, i.e., the theory of mind ability. For both tasks, we limited our
analysis to the data from the first run (with right-to-left phase encoding). The scan duration was
3'34” (284 TRs) for the motor task and 3'27” (274 TRs) for the social task.

Dataset2 was from the HCP 7T subset (n = 184; age range: 22-36 years; mean age =
29.4343.35 years; 112 females/72 males). Subjects in dataset2 contained twins and siblings

from 93 unique families. This subset included all available subjects in the full HCP dataset that
had NV fMRI data. Each subject underwent four NV fMRI runs in two sessions on a 7T Siemens
scanner (TR = 1000 ms, TE = 22.2 ms, resolution = 1.6 mm?3). Each run lasted approximately 15
mins, where subjects were presented with a sequence of different short movie clips (4-5 clips)
interleaved with 20 s rest blocks. Detailed descriptions of the movie clips have been published
elsewhere (Finn & Bandettini, 2021). In this study, we limited our analysis to the NV fMRI data
from the first run because the movie stimuli used in the other three runs had slight differences in
timing across subjects, which may potentially affect the results. Moreover, only the movie clips
over 3 mins from the first run were analysed, resulting in three movie clips: “Two Men” (Movie1),
“Welcome to Bridgeville” (Movie2), and “Pockets” (Movie3). Their scan durations were 4’04” (244
TRs), 03'41” (221 TRs) and 03'08” (189 TRs), respectively.

Apart from the NV fMRI data, task-based and RS fMRI data of all subjects in dataset2
were also included in our analysis for comparison. All task-based fMRI images were acquired on
a 3T Siemens scanner with the same protocols as described above for dataset1. Only the data of
the motor (3’34”), social (3°27”), and language tasks (3’57”) from the first run (with right-to-left
phase encoding) were included. The RS fMRI images were acquired before the NV fMRI run we
used in this study in the same session on a 7T Siemens scanner with the same imaging
parameters as described above. The scan duration of the RS fMRI run was 15 mins (900 TRs).

A total of 8 different behavioural phenotypes, covering fluid intelligence, working memory,
personality and emotion recognition were studied here. Each phenotype was measured by a

single summary score for each subject (fluid intelligence: “PMAT24_A_CR”, working memory:
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“ListSort_Unadj”, openness: “NEOFAC_QO”, agreeableness: “NEOFAC_A”, conscientiousness:
“NEOFAC_C”, extraversion: “NEOFAC_E”, neuroticism: “NEOFAC_N”, and emotion recognition:
“ER40_CR”). Descriptive statistics of these 8 measures and their respective behavioural tests are
provided in Table S2. Detailed descriptions of the tests to measure these phenotypes can be
found elsewhere (Barch et al., 2013). Five subjects were excluded due to the lack of the complete
fMRI and behavioural data mentioned above, resulting in a total of 179 subjects (108 females/71

males) for dataset2.

4.2 fMRI data preprocessing

All 3T task-based fMRI images were preprocessed with the HCP minimal preprocessing pipeline
(Glasser et al., 2013), which includes gradient unwarping, motion correction, spatial normalisation
to the Montreal Neurological Institute (MNI) space and intensity normalisation. We further
preprocessed these images by regressing out Friston’s 24 head motion parameters (Friston et al.,
1996), as well as the mean time series of white matter and cerebrospinal fluid and the linear
trend, using the Data Processing and Analysis for Brain Imaging (DPABI) toolbox (Yan et al.,

2016) (http://rfmri.org/dpabi) in Matlab R2019a. All 7T NV and RS fMRI images were

preprocessed with the standard HCP pipelines (Glasser et al., 2013), including correction for
distortion and motion, registration to the MNI space, high-pass filtering, removal of 24 motion
parameters and FIX-denoising (Salimi-Khorshidi et al., 2014). The first 10 volumes of the NV
fMRI data were discarded for obtaining stable signals for each movie clip separately. For all the
NV, task-based and RS fMRI images, the whole brain was divided into 268 ROls using a
functionally defined parcellation (Shen et al., 2013) that has been widely applied to the HCP
dataset. The parcellation was resampled to match the spatial resolutions of the corresponding
fMRI images. Within each ROI, the mean time series over all voxels was extracted and z-score
normalised (i.e., zero-mean with unit-variance) for each subject. Head motion was measured by
the relative root-mean-square framewise displacement (RMS-FD;
“Movement_RelativeRMS_mean.txt”) for each subject and each fMRI paradigm. The RMS-FD
values of all subjects from all these fMRI paradigms were less than 0.5 mm, and thus no subject

was further excluded from the analysis.
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4.3 TOPF: Identification of shared responses and individual-specific topographies

The first step of TOPF is to delineate individual stimulus-evoked brain activity patterns across
ROIs from NV fMRI data in a data-driven manner. For NV fMRI signals, it is often assumed that,
in each brain region, for a given subject i, the observed fMRI time series x; consists of three time
series components (Nastase et al., 2019):

x;(t) = c(t) +id;(t) + &(t) (1)
where c is a stimulus-evoked component that is shared across all subjects (denoted as shared
response), id; is also stimulus-evoked but unique to each individual (denoted as idiosyncratic
response), &; is the residual representing the other signal components, and t is a specific time
point. However, it is usually difficult to identify the id;s and later link them to other known aspects
of the individuals (e.g., behavioural performance or personal traits). To represent individual
differences in these stimulus-evoked responses, recent studies have modified the formulation as
follows (Finn et al., 2020; Di & Biswal, 2022):

x;(€) = c(t) + Biid(t) + &(8). (2)

This formulation is based on an assumption that there is some consistent response, id, across
subjects and it is expressed differently across individuals by ﬁi. Note that id and c in this
equation is interchangeable as they both represent some consistent response across subjects.
Actually, it is possible that there are multiple consistent responses underlying the brain activity
across subjects. Therefore, in this study, we further modify the formulation as:

xi(t) = Pinc1(0) + Biac2(8) + -+ + Buc (8) + &(8), (3)
where each ¢; is a consistent response across subjects, which we refer to as a shared response.

Each scaler ﬂi]. represents the individual-specific expression (IE) level of ¢; for subject i. That

means, we define a set of common bases (c;) across subjects to reflect the stimulus-evoked brain

activity and summarise individual differences therein as the IE values of each ¢;, i.e., ,BL.]..

In this work, we applied PCA to identify the shared responses c; and their corresponding

IE values of each subject ,BL.J. for each ROl separately. Specifically, for each ROI, we first

constructed a data matrix of preprocessed fMRI time series across subjects, X = [x;,x,...,x,] €

32



760
761
762
763
764
765
766
767
768
769
770
771
772
773
774

775
776
777
778
779
780

781

782
783
784
785
786

R%*™ where n is the number of subjects, d is the number of time points, and x; is the z-score
normalised time series for subject i. A PCA was then performed on X, where the subjects were
treated as variables and the time points as samples. The data matrix X of each ROI can be
written as:

X=cwr, (4)
where each column, ¢;, of C = [¢y,¢;...,¢p] € RYP denotes the j-th PC scores across time, each
column, w;, of W = [w;,w,...,w,] € R™*?, denotes the weights of the j-th PC across subjects,
and p denotes the total number of PCs. These PCs are ordered according to the amount of
variance they explain and c; explains the largest amount of variance. The time series of subject i
(x;) can thus be represented as:

Xi = WitCp + WipCy + o+ Wi, (5)
where w;; represents the weight of subject i in PC j. We assume that the larger amount of
variance a PC captures, the more likely it reflects a meaningful shared response. Therefore, we
considered only the first few PCs that explain the largest amount of variance as shared
responses for subsequent analyses. The IE value of PC j in subject i , :81-]-’ was operationalised
as the loading of ¢; onto x;, which is equivalent to the PC weight w;; multiplied by the square root
of the eigenvalue of c;. This procedure was repeated for each ROl separately. Finally, for each
subject, we collected the PC loadings of that subject across all ROlIs to reflect a brain activity
pattern specific to that subject, a construct we refer to as individual-specific topography. PCA was
implemented in Python using the “sklearn.decomposition.PCA” function in the scikit-learn

package (Pedregosa et al., 2011) (https://scikit-learn.org/stable/).

4.4 Validation of TOPF for identifying task-evoked activity

The validity of TOPF in capturing stimulus-evoked activity was assessed on dataset1, which
contained fMRI data of two conventional tasks with known timing of individual events. We note
that as TOPF is a fully data-driven approach, it does not rely on information of the event structure
of the tasks; instead, TOPF derives the topography and the temporal profile of shared responses

across the whole scan of each task.
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For each task, we applied a PCA to each ROI separately. We constructed a group-level
topography across ROls by using the variance explained by the PC1 time series to reflect group-
level “activation” evoked by the task. This topography was then compared against a group-level,
task-evoked activation (z-score) map derived by GLM by Pearson’s correlation. The GLM-derived
map was provided by the HCP and downloaded from NeuroVault (Gorgolewski et al., 2015)

(https://neurovault.org). We then conducted similar analyses at an individual-subject level. For

each subject, the TOPF-derived individual-specific topography (i.e., PC1 loadings across all
ROIs) was compared to the GLM-derived activation map of the given subject (available from the
HCP) by Pearson’s correlation. The amount of captured individual differences was quantified for
each approach by between-subject correlations. Note that the GLM-derived activation maps were
initially generated for each experimental condition separately (e.g., left-hand movement or tongue
movement), whereas the TOPF-identified topographies reflected the overall brain activity across
all experimental conditions within a task. Therefore, before each comparison, we aggregated the
GLM-derived activation maps across all experimental conditions by computing the maximum of
the absolute activation values for each voxel in FSL (Jenkinson et al., 2012)
(http://fsl.fmrib.ox.ac.uk/fsl) and then averaged over all voxels within each ROI.

We next evaluated how well the detected PC1 time series reflected stimulus-evoked
activity temporally for each ROI separately. Specifically, for each experimental condition i, we
modelled a canonical response (c;) by convolving the timing of the relevant events with the
canonical HRF as implemented by the “spm_hrf.m” function of the Statistical Parametric Mapping
(SPM) software (Penny et al., 2011) with default settings in Matlab R2019a. For each ROI, we

then combined these canonical responses across all experimental conditions with the GLM-

derived activations of the given ROI in these conditions as weights:

HOEDTERAG (6)
where y’/(t) denotes the combined model of ROI j at time point t and Zij denotes the GLM-
derived activation of ROI j in task condition i. Correspondence between the detected PC1 time

series and the combined model y/ was measured by Pearson’s correlation for each ROI
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4.5 Stability analysis of shared responses

The stability of the TOPF-derived shared response time series across different subsamples was
evaluated on the NV fMRI data in dataset2. For each movie clip, we varied the sample size
(number of subjects, n) of the input fMRI data matrix from 10 to 90 with a step size of 20 and
created 100 different subsamples for each sample size. Only unrelated subjects were included in
the same subsample to avoid possible bias from the family structure of the dataset. The stability
was first evaluated for each ROI separately at each value of n by computing the mean Pearson's
correlation coefficient of the derived PC1 time series across all pairs of subsamples. Given that
the derived PC1s may be sign-flipped for some subsamples, we used the absolute correlation
value to reflect the similarity of any two PC time series. The stability was then averaged over all

ROIs to reflect the overall stability across the whole brain.
4.6 Evaluation of individual differences captured by individual-specific topographies

The ability of TOPF to capture individual differences was assessed by the between-subject
similarity of individual-specific topographies (i.e., PC1 loadings across ROIs). The topography
was derived by TOPF for each subject on each subsample (as described previously) of the NV
fMRI data at n = 90. The between-subject similarity in these topographies was computed by
using Pearson's correlation for each pair of subjects within each subsample for each movie clip
separately. Intersubject variability in brain activity was also quantified for each ROl separately as
the standard deviation of its PC1 weights. Note that here we used PC1 weights for a fair
comparison across different ROls instead of PC1 loadings. Likewise, the within-subject similarity
was computed by Pearson's correlation coefficient of the topographies between each pair of
movie clips for each subject within each subsample separately. The cross-movie stability of the
pattern of the PC1 loadings across all subjects was computed by using Spearman’s correlation

for each ROI and each pair of movie clips on each subsample separately.

4.7 TOPF: Phenotype prediction

The second step of TOPF is to investigate the behavioural relevance of the identified individual-

specific topographies under a machine learning-based predictive framework. fMRI data from
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three NV paradigms and three tasks in dataset2 were used to predict eight different phenotypes
separately to evaluate the predictive framework. In this study, we used a ridge linear regression
model for the prediction. We chose this particular model because it is simple and has been shown
to achieve robust performance in various neuroimaging studies (Cui & Gong, 2018; Tian &
Zalesky, 2021). We note that other prediction models could also be used within TOPF in general.

Prediction models were trained in a 10-fold cross-validation (CV) scheme. Specifically, all
subjects (n = 179) were randomly divided into 10 groups of roughly the same size. To account for
the family structure of dataset2, subjects from the same family were ensured to be all included in
either the training set or the test set for each fold. In each fold, one group was held out for testing,
with subjects from the other groups being used for training. Each group was used for testing once
and only once. In each fold, the training set was used to train a prediction model, where for each
subject all IE values (PC1 loadings) in the individual-specific topography were used as features,
resulting in a 1 x 268 feature vector. Each feature was then z-score normalised.

We note that to avoid information leakage from the test to the training set, test subjects
were totally separated from training subjects during both the feature extraction and phenotype
prediction phases. Instead of adding test subjects to the training sample and redoing PCA, the
computation of features of test subjects was separate from that of training subjects. Specifically,
for each test subject, each feature was computed as the Pearson's correlation coefficient
between that subject’s fMRI time series and the PC1 time series which was previously derived on
the training set of a given ROI. We note that in PCA, a PC loading of a variable (i.e., a training
subject in our case) is mathematically equivalent to the Pearson's correlation coefficient between
this original variable and the new variable (i.e., the PC) (Kanti et al., 1979). Therefore, the
features of both training and test subjects are computed by comparing to the same group-level
templates (i.e., the PCs learned on the training sample), thus ensuring their comparability. For

each training set, the optimal regularisation parameter A of ridge regression was determined by

an inner 5-fold CV from 12 values [27°%,27%,..., 2°]. The whole pipeline was implemented in

Python using the scikit-learn and julearn packages
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868  (https://juaml.github.io/julearn/main/index.html). For each fMRI paradigm-phenotype combination,

869 the above procedure was repeated 10 times with different groupings of subjects.

870 For each computation, prediction performance was measured by the Pearson's

871 correlation coefficient between the predicted and the observed phenotypic scores across all

872  subjects and all 10 folds. To control for the influence of head motion (measured by the RMS-FD
873 values), age and sex, we regressed out these confounds from both the observed and predicted
874 scores and computed the correlation of the two residuals. The correlation was then averaged

875 over the 10 repetitions. Permutation tests with 5000 iterations were used to assess whether the
876  obtained result was significantly higher than the chance level (Dinga et al., 2020). For each

877 iteration, features were randomly shuffled across subjects with the original orders of the

878 confounds and observed scores being kept. A correlation coefficient between predicted and

879 observed scores was computed on the permuted data for each iteration and collected across all
880 iterations to construct the null distribution. A p-value was then obtained by computing the

881 proportion of iterations for which the true correlation was higher than that on the non-permuted
882  data. The prediction performance of TOPF was further evaluated (i) without confound removal
883  and (ii) using leave-one-out CV. Additionally, to rule out the impact of scan length, we further
884  evaluated the prediction performance of TOPF after truncating all fMRI data to the same length.
885  All NV fMRI data were truncated to the length of the shortest movie (Movie3), roughly 3 mins (179
886  TRs), by removing the last few TRs of each data. Similarly, all task fMRI data were also truncated
887  to the length of 3 mins (250 TRs). Prediction performance was recalculated on the truncated data

888  using the same procedure as described above.
889 4.8 Comparisons with FC-based prediction approaches

890 Three commonly used FC-based prediction approaches, including the whole-brain connectome-
891 based prediction (WConn), nodal connectivity strength-based prediction (NConn), and

892  connectome-based predictive modelling (CPM) (Shen et al., 2017), were compared with TOPF to
893 further evaluate the utility of TOPF for phenotype prediction. Apart from the six fMRI paradigms
894  (three NV paradigms and three tasks), we further included RS fMRI data of all the subjects in

895 dataset2 (as described above). For each subject and each fMRI paradigm, we computed the FC
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as the Pearson's correlation coefficient of the fMRI time series for each pair of ROIs separately,
resulting in a total of eight 268 x 268 connectivity matrices for each subject. Each correlation
coefficient was then Fisher z-transformed. For WConn, we extracted the upper triangle of the
connectivity matrix without the diagonal as features, yielding a total of 35778 features
(connections) for each subject and each fMRI paradigm. For NConn, we computed the node
strength for each ROI separately, which is defined as the sum of the absolute values of the
connectivities between the given ROI and all the other ROls, resulting in a total of 268 features
(ROls) for each subject and each fMRI paradigm. The WConn and NConn features were then
used to predict fluid intelligence, working memory, openness and emotion recognition on each
fMRI paradigm separately by repeating the same prediction pipeline as used in TOPF. CPM uses
a linear regression model and applies an additional feature selection step in each fold, where only
the features (i.e., connections) that are correlated with the phenotype to be predicted are
preserved. The selected features are then grouped into two groups according to whether they are
positively and negatively correlated with the phenotype and the sum over all features within each
group is then used as a feature for further steps (Shen et al., 2017). We used a correlation
threshold of |r| = 0.2 for feature selection as used in a previous study (Finn & Bandettini, 2021).
Code for implementing CPM was also adapted from that study (Finn & Bandettini, 2021).
Prediction performance of CPM was also evaluated via 10 repetitions of a 10-fold CV.
Comparisons between methods were conducted by using corrected resampled paired t-tests over

scores of all CV folds and repetitions (Nadeau & Bengio, 2003).

4.9 Ildentification of phenotype-related brain regions

Permutation feature importance (Breiman, 2001) was computed for each ROI in each fMRI
paradigm-phenotype combination with significant predictions separately. Specifically, for each
successful combination, we collected the models fitted on the training sets across all CV folds
and all repetitions, resulting in a total of 100 models. For each ROl and each model, we randomly
shuffled the observations of the given ROI in the test set and recomputed the prediction
performance. After repeating the procedure 100 times, the importance of each ROl in the given

model was then quantified as the decrease in prediction performance (i.e., the difference between
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the true performance and the performance derived on the permuted test set), averaged across
the 100 iterations. This analysis was implemented in Python using the “permutation_importance”
function in the scikit-learn package. Finally, for each successful fMRI paradigm-phenotype
combination, a right-tailed, one-sample permutation test (Manly, 2007) with 5000 iterations was
used to identify the ROIs for which the importance values over all the models were significantly
larger than zero (corrected p < 0.05). The correction for multiple comparisons was performed
against a null distribution of the maximum value across all ROls in each iteration (Nichols &
Holmes, 2002). We note that in this study we used the permutation feature importance instead of
the feature weights (i.e., regression coefficients) to identify the predictive features because the
latter are known to have certain limitations in their interpretability (Haufe et al., 2014; Tian &
Zalesky, 2021). The similarity of the spatial patterns of the identified predictive ROls between
fMRI paradigms was computed by the Jaccard similarity index for each pair of fMRI paradigms

with significant predictions for each phenotype separately.

4.10 Selection of PCs for TOPF

The statistical significance of each PC time series derived by TOPF was evaluated by using a
conservative permutation test (Di & Biswal, 2022). This analysis determined whether the amount
of variance explained by each PC time series exceeded chance level. Specifically, for each ROI,
we permuted the input fMRI data matrix X by applying circular shifting. The fMRI time series of
each subject was shifted with a random time interval so that the fMRI time series across subjects
were mismatched in time while the autocorrelation structure of each fMRI time series was
preserved (Kauppi et al., 2010). Next, a PCA was applied to the permuted data matrix and the
procedure was repeated 10000 times. A null distribution was then constructed by collecting the
variance explained by PC1 from the 10000 iterations. The p-value of each PC of the given ROI
was determined as the proportion of iterations on which the explained variance was larger than
the true variance explained by the PC.

In addition to using PC1 loadings, prediction performance of TOPF was further evaluated
by using PC2 loadings (268 features) and the combination of PC1 and PC2 loadings (268*2
features; PC1+2) as features, together with five different thresholds of explained variance (0%,
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3%,5%,7%,10%), resulting in a total of 15 different settings. In each CV fold, only the features for
which the corresponding PC time series explained a larger amount of variance than the threshold
were used in further steps for phenotype prediction. All the other procedures were the same as

described in Section 4.7.
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