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Abstract 9 

Functional magnetic resonance imaging (fMRI) during naturalistic viewing (NV) provides exciting 10 

opportunities for studying brain functions in more ecologically valid settings. Understanding 11 

individual differences in brain functions during NV and their behavioural relevance has recently 12 

become an important goal. However, methods specifically designed for this purpose remain 13 

limited. Here, we propose a topography-based predictive framework (TOPF) to fill this 14 

methodological gap. TOPF identifies individual-specific evoked activity topographies in a data-15 

driven manner and examines their behavioural relevance using a machine learning-based 16 

predictive framework. We validate TOPF on both NV and task-based fMRI data from multiple 17 

conditions. Our results show that TOPF effectively and stably captures individual differences in 18 

evoked brain activity and successfully predicts phenotypes across cognition, emotion and 19 

personality on unseen subjects from their activity topographies. Moreover, TOPF compares 20 

favourably with functional connectivity-based approaches in prediction performance, with the 21 

identified predictive brain regions being neurobiologically interpretable. Crucially, we highlight the 22 

importance of examining individual evoked brain activity topographies in advancing our 23 

understanding of the brain-behaviour relationship. We believe that the TOPF approach provides a 24 

simple but powerful tool for understanding brain-behaviour relationships on an individual level 25 

with a strong potential for clinical applications.  26 

Keywords: Naturalistic viewing fMRI; Individual differences; evoked activity; topography; 27 

behavior prediction  28 
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1. Introduction 29 

Functional magnetic resonance imaging (fMRI) during naturalistic viewing (NV), i.e., movie-30 

watching, has recently emerged as a useful tool for studying brain function. NV fMRI uses 31 

naturalistic stimuli (e.g., movie clips) in the scanner to approximate real-life situations, 32 

overcoming the limited ecological validity of conventional task-based paradigms (Sonkusare et 33 

al., 2019). Such naturalistic stimuli also elicit complex cognitive processes that may not be 34 

observable when using simplified conventional tasks, such as hierarchical memory in processing 35 

unfolding stories (Hasson et al., 2015). Furthermore, NV settings improve subject compliance and 36 

engagement, overcoming the unsystematic noise caused by unconstrained brain states in 37 

resting-state (RS) settings (Vanderwal et al., 2019). While the neural response during NV tends to 38 

synchronise across participants due to exposure to the same stimulus (Hasson et al., 2004), 39 

recent studies have found that it still preserves substantial individual differences (Vanderwal et 40 

al., 2017; Finn et al., 2020). These advantages make NV fMRI promising for exploring individual 41 

differences (Dubois & Adolphs, 2016), particularly in higher-order brain functions and clinical 42 

applications (Eickhoff et al., 2020). 43 

NV fMRI signals can be assumed to contain three components: stimulus-evoked activity, 44 

spontaneous brain activity and noise, among which the stimulus-evoked activity is generally of 45 

primary interest. As the focus of fMRI studies is gradually shifting from groups to individuals, a 46 

fundamental question regarding the stimulus-evoked activity is: why do different individual brains 47 

produce different responses to the same naturalistic stimulus? One practical way to interpret 48 

individual differences in brain measures is to link them to individual behavioural measures 49 

(Dubois & Adolphs, 2016). Recent studies have found that individual differences in neural 50 

response to the same naturalistic stimulus are associated with individual differences in not only 51 

behavioural measures related to the presented stimulus but also intrinsic personal traits 52 

(Campbell et al., 2015; Di & Biswal, 2022; Finn et al., 2020; Gruskin et al., 2020). 53 

Methodologically, these studies commonly interpret individual differences in stimulus-evoked 54 

activity by correlating them with individual behavioural measures for each voxel or region of 55 

interest (ROI) separately. However, this approach does not sufficiently uncover the brain-56 
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behaviour relationship, because it typically only examines the behavioural relevance of a single 57 

voxel or ROI at each time, rather than that of the spatially distributed activity patterns across the 58 

whole brain. Furthermore, it does not ensure the generalisability of the learned brain-behaviour 59 

relationship to unseen data. Therefore, a novel computational framework for understanding 60 

individual differences in neural response during NV fMRI in relation to behaviour is needed. 61 

A predictive framework may be better suited for investigating the brain-behaviour 62 

relationship compared to correlational approaches (Dubois & Adolphs, 2016), as it will allow 63 

making predictions for individual subjects from novel data, which has great practical utility 64 

particularly in clinical settings. It will also provide important insights into the neural substrates of 65 

behaviours and biomarkers of diseases (Rosenberg et al., 2018; Woo et al., 2017). More 66 

importantly, execution of complex brain functions often requires participation of multiple brain 67 

regions. Examining distributed activity patterns facilitates not only the understanding of brain 68 

functional organisation but also mapping between brain function and behaviour (Cohen et al., 69 

2017; Eickhoff et al., 2018; Gonzalez-Castillo et al., 2012). A predictive framework can open the 70 

door to a wealth of advanced machine learning models, which will enable investigation of the 71 

behavioural relevance of distributed brain activity patterns and identification of more complex 72 

brain-behaviour relationships. 73 

Another important consideration for NV fMRI data analysis is separating stimulus-evoked 74 

activity from other signal components (Simony & Chang, 2020). Traditional general linear model 75 

(GLM)-based approaches have been used to identify the stimulus-evoked activity based on 76 

models of relevant features of presented stimulus (e.g., movie annotations) (Lahnakoski et al., 77 

2012). These models can be difficult to obtain due to the dynamic and multimodal nature of 78 

naturalistic stimuli. By contrast, data-driven approaches extract the stimulus-evoked signals 79 

without the need of explicit descriptions of the stimulus. They leverage the time-locked nature of 80 

the stimulus across subjects, typically using the temporal variance shared across different 81 
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subjects to reflect the stimulus-evoked activity (Nastase et al., 2019). Applications of data-driven 82 

approaches have greatly advanced our understanding of brain function in NV settings. 83 

One commonly used data-driven approach is the intersubject correlation (ISC) method 84 

(Hasson et al., 2004; Nastase et al., 2019), which quantifies the shared variance across subjects 85 

by the correlation of their fMRI time series. However, in individual differences studies, 86 

applications of ISC often focus on the relative similarity of brain activity between subjects, rather 87 

than provide a measure of brain activity of individuals. While more sophisticated data-driven 88 

approaches, such as the shared response model (SRM) (Chen et al., 2015) and hyperalignment 89 

(Haxby et al., 2011), can extract stimulus-evoked signals in individuals, they often target fine-90 

grained activity patterns within certain brain regions and have high memory and computational 91 

demands. On the other hand, approaches that have been widely used for characterising 92 

individual brain activity patterns on RS fMRI data, such as functional connectivity (FC) and 93 

independent component analysis (ICA), typically concern the interactions among ROIs or voxels 94 

rather than the stimulus-evoked activity. 95 

In this study, we propose a novel approach for understanding individual differences and 96 

brain-behaviour relationships on NV fMRI data, called topography-based predictive framework 97 

(TOPF). TOPF consists of two components: (i) identifying individual evoked activity topographies 98 

across all ROIs in a data-driven manner, and (ii) examining their relationship with individual 99 

behaviour via machine learning-based prediction. Specifically, TOPF applies a principal 100 

component analysis (PCA) to each ROI separately to identify stimulus-evoked activity time 101 

courses shared across subjects by principal components (PCs). Subject-wise PC loadings 102 

thereby reflect the expression levels of these shared time courses specific to each subject. The 103 

activity topography for each subject is then characterised by the pattern of these PC loadings 104 

across all ROIs, termed individual-specific topography (Fig. 1). These topographies intuitively 105 

delineate the unique patterns of how strongly each subject’s brain activity follows the shared 106 
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stimulus-evoked activity across the whole brain. A machine learning-based predictive framework 107 

is then employed to predict individual behavioural phenotypes based on these topographies. 108 

Capitalising on fMRI data of multiple NV and task-based paradigms from the human 109 

connectome project (HCP) (Van Essen et al., 2013), we first show that TOPF can effectively and 110 

stably identify stimulus-evoked responses and capture meaningful individual differences therein in 111 

a data-driven way. Next, we show that TOPF successfully predicts phenotypes across cognition, 112 

emotion and personality on unseen subjects based on their activity topographies. Additionally, we 113 

show that prediction performance of TOPF is similar to and mostly better than that of three 114 

popular FC-based approaches. Finally, we localise brain regions that are most predictive of the 115 

phenotypes and show that the prediction models learned by TOPF provide promising 116 

interpretability. 117 

 118 
Figure 1. Schematic of TOPF for identifying shared responses and individual-specific topographies. 119 

(A) For each subject, the whole brain is parcellated into distinct functionally defined ROIs and the fMRI 120 

BOLD time series averaged across voxels within each ROI is extracted. (B) For each ROI, the extracted 121 

fMRI time series is z-score standardised, collected across all subjects and then subjected to a PCA. (C) The 122 

resultant PCs and PC loadings of each ROI represent the shared response time series and individual-123 

specific expressions (IEs), respectively. Here, we only plot the first PC (PC1) that explains the largest 124 

amount of variance for each of these example ROIs for illustration. (D) The pattern of the PC loadings of 125 

each subject across all ROIs is defined as an individual-specific topography (e.g., marked by the black box).  126 
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2. Results 127 

We used two datasets from the HCP (dataset1, n = 100; dataset2, n = 179; see Tables S1 and 128 

S2 for an overview), covering fMRI data from three NV, three task and one RS conditions and 129 

eight behavioural phenotypes, to evaluate the TOPF approach. Detailed descriptions of the 130 

datasets and methodology of TOPF can be found in section 4 “Materials and Methods”. In this 131 

section, we introduce several key concepts in TOPF and then report the results of our analyses.  132 

2.1 TOPF identifies shared responses and individual-specific topographies  133 

The first step in TOPF is to identify individual stimulus-evoked activity patterns across ROIs. 134 

Broadly, this step is built on an assumption that the observed NV fMRI time series in each ROI 135 

contains a stimulus-evoked component, such that it is shared but expressed with different 136 

intensities across individuals (Di & Biswal, 2022; Finn et al., 2020). In this study, this time series 137 

component and its expression level for each subject are termed shared response and individual-138 

specific expression (IE), respectively. The pattern of the IE values across ROIs for each subject is 139 

what we refer to as individual-specific topography. Such individual-specific topographies will be 140 

later used as features for phenotype prediction. 141 

Aiming at individual topographies of a reasonable resolution rather than the fine-grained 142 

patterns across voxels, we parcellated the whole brain into 268 functionally defined ROIs (Shen 143 

et al., 2013) and computed the fMRI time series averaged over voxels within each ROI (Fig. 1A). 144 

This reduced the spatial dimensionality of fMRI data, thereby the computational load, and 145 

increased the signal-to-noise ratio. TOPF uses PCA to identify the shared response and IEs. For 146 

each ROI separately, the voxel-averaged fMRI time series of all subjects were subjected to a 147 

PCA after z-score normalisation, where dimensionality reduction was performed on the subject 148 

dimension rather than the temporal dimension of the fMRI data (Fig. 1B). The shared response 149 

and IEs for each ROI are represented by the detected PC time series and the subject-wise PC 150 

loadings, respectively (Fig. 1C). The individual-specific topography of each subject is 151 

operationalised as the pattern of that subject’s PC loadings across all ROIs (Fig. 1D). As the first 152 

PC (PC1) captures the largest temporal variance shared between subjects across the duration of 153 
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the scan, we assume that PC1 is most likely to reflect the shared stimulus-evoked activity. In the 154 

main text we will mainly focus on PC1-based results (see results for the later PCs in 155 

Supplementary Information). Results on how different choices of the number of PCs influence 156 

prediction performance are shown in Section 2.8.    157 

2.2 TOPF effectively identifies task-evoked activity 158 

We used dataset1, containing task-based fMRI data of 100 unrelated subjects, to evaluate the 159 

validity of TOPF in identifying stimulus-evoked activity. Two representative tasks of the seven 160 

HCP tasks (Barch et al., 2013) that tapped into two different levels of the hierarchy of brain 161 

function, i.e., the motor task and the social cognition (social) task, were used for the evaluation. 162 

Task-based fMRI data were used because the availability of the temporal structure of these 163 

conventional tasks permitted the application of GLM, which is expected to accurately identify 164 

task-evoked activations, thus providing a “ground truth” to evaluate TOPF (Pajula et al., 2012). 165 

For each task, a PCA was applied to the time series across the whole task of each ROI 166 

separately and the resulting PC1 time series was considered as a shared response of the 167 

respective ROI.  168 

We first evaluated the validity of the spatial pattern of evoked activity captured by TOPF. 169 

It is assumed that any variance shared across subjects comes from processing the same 170 

stimulus or performing the same task at the same time (Hasson et al., 2004; Nastase et al., 171 

2019). Therefore, here we used the variance explained by PC1 to reflect group-level task-evoked 172 

“activation”. A higher amount of variance explained by PC1 indicates a stronger synchronisation 173 

of brain activity across subjects evoked by the task (Di and Biswal, 2022). The map of the 174 

variance explained by PC1 across ROIs was compared against a group-level activation (z-score) 175 

map derived by GLM (Van Essen et al., 2013). The latter was generated by aggregating the 176 

activation maps (i.e., computing the maximum absolute values of the z-scores) across all 177 

experimental conditions. A high Pearson's correlation coefficient (𝑟𝑟) between these two maps was 178 

achieved for both tasks (motor: 𝑟𝑟 = 0.72; Fig. 2A; social: 𝑟𝑟 = 0.77; Fig. 2C; both 𝑝𝑝 < 𝑒𝑒−10). At an 179 

individual subject level, the activity topographies derived by TOPF (i.e., subject-specific PC1 180 

loadings across ROIs) also achieved a moderate correspondence with those derived by GLM 181 

https://docs.google.com/document/d/1wml818IUwxyhdq8W05P4Ek_tFtph1eAA/edit#heading=h.1rvwp1q
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(motor: 𝑟𝑟 = 0.50 ± 0.15, social: 𝑟𝑟 = 0.64 ± 0.09; Fig. S1A and B), with TOPF capturing greater 182 

individual differences (Fig. S1C). These results indicate that the activity topographies derived by 183 

TOPF effectively reflect the spatial patterns of task-evoked activations.  184 

 185 
Figure 2. TOPF identifies stimulus-evoked brain activity on task-based fMRI data. Correspondence 186 

between TOPF-derived topographies and GLM-derived activation maps, measured by Pearson's correlation 187 

coefficient (𝑟𝑟), for the motor (A) and social (C) tasks separately at the group level. For TOPF, each value 188 

represents the amount of variance explained by the PC1 time series in the given ROI. For GLM, each value 189 

represents the activation strength (z-score) aggregated across all experimental conditions within each task 190 

(maximum of their absolute values) for the given ROI. The colour from yellow to red indicates the value from 191 

low to high. Correspondence (𝑟𝑟) between the detected PC1 time series (blue) and the model used in GLM 192 

(red) for representative ROIs marked in circles in (A) and (C) for the motor (B) and social (D) tasks 193 

separately. For GLM, the model of each task is computed as the convolution of the HRF with the temporal 194 

structure of the given task aggregated over all experimental conditions. For TOPF, the results are computed 195 

over the time series across the whole scan of each task. The brain maps are visualised using BrainNet 196 

Viewer (Xia et al., 2013). 197 

 198 

The validity of the shared response time series of each ROI was assessed by comparing 199 

it against a combination of models used in GLM using Pearson’s correlation. The latter was 200 
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constructed as the convolution of the timing of the relevant events with a canonical hemodynamic 201 

response function (HRF) aggregated across experimental conditions. For both tasks, a high 202 

correlation coefficient was observed in those strongly activated ROIs, such as the left premotor 203 

cortex (related to tongue movement) (Schubotz et al., 2010) for the motor task (𝑟𝑟 = 0.82; Fig. 2B) 204 

and the right temporoparietal junction (TPJ, related to social cognition) (Van Overwalle, 2009) for 205 

the social task (𝑟𝑟 = 0.89; Fig. 2D; see Fig. S2 for results across the whole brain). These results 206 

further demonstrate the ability of TOPF for capturing evoked brain activity. Besides, as we 207 

expected, PC1 better reflected task-evoked activity than PC2 and PC3 (Fig. S3). 208 

2.3 Shared responses are stable across subsamples  209 

In TOPF, we assume that a stable identification of the shared responses is essential for a 210 

meaningful characterisation of individual differences (i.e., individual-specific topographies). To 211 

evaluate how the shared responses detected by TOPF change with sample composition and 212 

sample size, we used NV fMRI data of 179 subjects in dataset2, which were acquired while 213 

watching three different movie clips, namely “Two Men” (Movie1), “Welcome to Bridgeville” 214 

(Movie2), and “Pockets” (Movie3). For each ROI and movie clip separately, we measured the 215 

stability of the derived PC1 across 100 different subsamples over a range of sample sizes (𝑛𝑛) 216 

from 10 to 90 by using Pearson's correlation. To avoid possible bias from the family structure of 217 

this dataset (Van Essen et al., 2013), no subjects from the same family were included in the same 218 

subsample.   219 

We quantified the overall stability as the mean stability across all ROIs (Fig. 3A). As 220 

sample size increased, the overall stability also increased and achieved a high value for all three 221 

movies with small variability across subsamples at 𝑛𝑛 = 90 (Movie1: 0.90 ± 0.01; Movie2: 0.83 ±222 

0.02; Movie3: 0.84 ± 0.02). In particular, the stability of the PC1 time series achieved above 0.80 223 

at 𝑛𝑛 = 90 for most ROIs in the sensory, frontal and parietal cortices (Fig. 3B; Fig. S4). The overall 224 

stability was much lower for PC2 and PC3 than for PC1 (Fig. S5). 225 
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 226 
Figure 3. TOPF stably identifies the shared response time series on NV fMRI data. (A) Stability of PC1 227 

over a range of sample sizes (𝑛𝑛) from 10 to 90. The overall stability for PC1 is computed as the stability (i.e., 228 

the mean absolute value of the Pearson's correlation coefficients of PC1 over all pairs of subsamples) 229 

averaged across all ROIs for each movie clip separately. The error bars depict the standard deviation across 230 

subsample pairs. (B) Stability map of the PC1 time series across the whole brain at 𝑛𝑛 = 90. For each ROI, 231 

the stability is averaged across all three movie clips. The colour from blue to red indicates the stability from 232 

low to high. 233 

2.4 Individual differences can be captured by individual topographies 234 

As TOPF reflects individual differences by IEs of shared responses rather than directly captures 235 

individuals’ idiosyncratic stimulus-evoked brain activity, it is necessary to evaluate whether such 236 

characterisation leaves enough room for individual variation. The individual-specific topographies 237 

derived by TOPF at 𝑛𝑛 = 90 on the NV fMRI data stated above were used for this evaluation (see 238 

Fig. 4A for an illustrative example). For each pair of subjects, we computed their similarity in 239 

individual topographies by Pearson’s correlation (𝑟𝑟) within each subsample for each movie clip 240 

separately (Fig. 4B). On average, the between-subject similarity for the three movies achieved 241 

𝑟𝑟 = 0.47 ± 0.14, 𝑟𝑟 = 0.41 ± 0.17, and 𝑟𝑟 = 0.38 ± 0.18, respectively. This result demonstrates that 242 

TOPF-derived individual topographies capture a considerable amount of individual differences. 243 

Additional analyses show that these individual differences mainly came from ROIs beyond the 244 

sensory cortex (Fig. S6).   245 

On the other hand, to understand how individual topographies captured by TOPF change 246 

across movie clips, we computed the within-subject similarity for each subject and each pair of 247 

movie clips on each subsample separately. The mean within-subject similarity (𝑟𝑟) across subjects 248 

and subsamples achieved approximately 𝑟𝑟 = 0.50 for all movie-clip pairs (Fig. 4C). In particular, 249 
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the pattern of the PC1 loadings over subjects remained relatively stable across movie clips 250 

(Spearman’s correlation 𝑟𝑟 = 0.44 − 0.75; Fig. S7) for the ROIs in the sensory cortex (Gao et al., 251 

2020). These results suggest that these individual topographies may reflect stable personal traits 252 

to a certain degree. 253 

 254 
Figure 4. TOPF captures individual differences by individual-specific topographies on NV fMRI data. 255 

(A) Individual-specific topographies of two representative subjects derived on a randomly selected 256 

subsample (𝑛𝑛 = 90) for each movie clip separately. The colour from green to red indicates the IE value (PC1 257 

loading) from low to high. Each subject shows a unique spatial pattern of the IE values while watching the 258 

movie clips. (B) Distribution of the between-subject similarity (Pearson's correlation coefficient, 𝑟𝑟) in the 259 

individual-specific topographies over all pairs of subjects within each subsample (𝑛𝑛 = 90) for each movie clip 260 

separately. (C) Distribution of the within-subject similarity (𝑟𝑟) in the individual-specific topography over all 261 

subjects within each subsample (𝑛𝑛 = 90) for each pair of movies separately. The three dashed lines inside 262 

each violin plot from top to bottom denote the third quartile, median and first quartile of the corresponding 263 

distribution, respectively.  264 
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2.5 Individual topographies predict individual phenotypes  265 

The second step in TOPF is to link the identified individual-specific topographies to individual 266 

phenotypes using a machine learning-based predictive framework. We investigated a total of 8 267 

phenotypes across cognition (fluid intelligence and working memory), personality (openness, 268 

agreeableness, conscientiousness, extraversion and neuroticism) and emotion (emotion 269 

recognition). For each phenotype, we used a single summary score as its measure (Table S2). 270 

For prediction of each phenotype, we applied TOPF to fMRI data of 6 different paradigms from 271 

the same cohort of subjects (𝑛𝑛 = 179; dataset2) separately, including the three NV paradigms 272 

(Movies 1-3) and three conventional tasks of similar scan durations, namely the motor, social, 273 

and language tasks (Table S1). Prediction was performed by using a ridge linear regression 274 

model for its simplicity and robustness. The model was evaluated by a nested 10-fold cross-275 

validation (CV) procedure with 10 repetitions. In each fold, the model was fitted on the training set 276 

by using the individual-specific topographies (i.e., the PC1 loadings of all ROIs) as features. The 277 

hyperparameter was optimised via an inner 5-fold CV. The fitted model was then tested by 278 

predicting the phenotypes of the test set. To avoid data leakage from the test set to the training 279 

set, features of the test set of each fold were derived based on the shared response learned on 280 

the training set, and subjects from the same family were ensured to stay either in the training or 281 

the test set. Prediction performance was assessed by the Pearson's correlation coefficient (𝑟𝑟) 282 

between predicted and observed scores over all subjects after regressing out potential confounds 283 

(age, sex and head motion; Table S3) from both scores (Dinga et al., 2020). Head motion was 284 

measured by the relative root-mean-square framewise displacement (RMS-FD). 285 

The prediction performance was significant for fluid intelligence, working memory, 286 

openness and emotion recognition (permutation-based 𝑝𝑝 < 0.05, 5000 iterations; Fig. 5; see 287 

Tables S4 and S5 for results of all phenotypes). Our subsequent analyses will thus mainly focus  288 

on these four phenotypes. Notably, the prediction performance varied substantially across fMRI 289 

paradigms. For example, working memory and openness were best predicted by Movie2 (𝑟𝑟 = 290 

0.30±0.04, permutation-based 𝑝𝑝<0.001) and Movie3 (𝑟𝑟 = 0.24±0.04, 𝑝𝑝=0.002), respectively, 291 

whereas fluid intelligence and emotion recognition were best predicted by the language task (𝑟𝑟 = 292 
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0.27±0.04, 𝑝𝑝=0.001) and social task (𝑟𝑟 = 0.23±0.02, 𝑝𝑝=0.002), respectively. Similar results were 293 

obtained before confound removal (Table S6), using the leave-one-out CV (Table S7), and after 294 

we controlled for the scan length by truncating all fMRI data to 3 mins (Fig. S8).  295 

 296 
Figure 5. Performance of TOPF for phenotype prediction. Prediction performance is computed by the 297 

Pearson's correlation coefficient (𝑟𝑟) between the residuals of predicted (pred_res) and observed scores 298 

(obs_res) over all subjects (𝑛𝑛 = 179) after regressing out sex, age and head motion (RMS-FD). Each box 299 

represents results from 10 repetitions of 10-fold CVs of each fMRI paradigm-phenotype combination (box: 300 

middle bar, median; upper and lower bars, third and first quartiles; upper and lower whiskers: maximum and 301 

minimum). Significant predictions (𝑝𝑝 < 0.05, evaluated by permutation tests with 5000 iterations) before and 302 

after FDR correction are marked by red stars and black stars, respectively. NV and task paradigms are 303 
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marked in red and blue, respectively. Only the phenotypes with significant predictions are shown here (see 304 

Tables S4 and S5 for the complete results). Mot: motor task; Soc: social task; Lan: language task. 305 

2.6 Comparisons with FC-based predictions  306 

To further validate the utility of TOPF for phenotype prediction, we compared TOPF with three 307 

commonly used prediction approaches in fMRI studies that employ different types of FC-based 308 

features. These include whole-brain connectome-based prediction (WConn), nodal connectivity 309 

strength-based prediction (NConn), and connectome-based predictive modelling (CPM) (Finn et 310 

al., 2015; Shen et al., 2017). To facilitate comparisons across methods, ridge regression models 311 

were applied for WConn and NConn. Performance of all the three approaches was evaluated via 312 

the same procedure as used by TOPF.  313 

Overall, TOPF outperformed all the FC-based approaches across the four phenotypes for 314 

all the fMRI paradigms except Movie3 (social: TOPF vs. WConn: 𝑝𝑝 = 0.011, TOPF vs. NConn: 315 

𝑝𝑝 = 0.001, TOPF vs. CPM: 𝑝𝑝 = 0.049, language: TOPF vs. NConn: 𝑝𝑝 = 0.041, others: 𝑝𝑝 > 0.05, 316 

corrected resampled t-tests (Nadeau & Bengio, 2003); Fig. 6A). For individual phenotypes, TOPF 317 

exhibited better performance than the other approaches for predicting the fluid intelligence, 318 

openness and emotion recognition scores across all fMRI paradigms (openness: TOPF vs. 319 

WConn/NConn: both 𝑝𝑝 = 0.036, others: 𝑝𝑝 > 0.05; Fig. 6B). While the best approach varied across 320 

individual fMRI paradigms and phenotypes, TOPF achieved the best prediction performance for 321 

all the four phenotypes (Fig. S9). Moreover, performance of applying TOPF on NV and task data 322 

also outperformed that of applying the FC-based approaches on RS data (Fig. S10).  323 
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 324 

Figure 6. Comparisons between TOPF and FC-based prediction approaches. Each method is evaluated 325 

via 10 repetitions of a 10-fold CV for each fMRI paradigm and phenotype separately. Results averaged (A) 326 

over the four phenotypes and (B) over the fMRI paradigms are shown. Prediction performance is measured 327 

as the Pearson's correlation coefficient (𝑟𝑟) between the residuals of predicted (pred_res) and observed 328 

scores (obs_res) after regressing out sex, age and head motion (RMS-FD) over all subjects (𝑛𝑛 = 179).  329 

Boxes: upper and lower whiskers: maximum and minimum; bars within each box from top to bottom: third 330 

quartile, median and first quartile. Statistical significance between TOPF and each of the other approaches 331 

is examined by using a corrected resampled paired t-test (Nadeau & Bengio, 2003). *: 𝑝𝑝 < 0.05.  332 

2.7 Phenotype-related brain regions 333 

To understand the neurobiological interpretation behind the prediction models obtained by TOPF, 334 

we identified ROIs that were predictive of these phenotypes based on their permutation feature 335 

importance (Breiman, 2001). For each phenotype, we identified the predictive ROIs only for the 336 

fMRI paradigms on which the phenotype was significantly predicted. For fluid intelligence, we 337 

identified a broad range of predictive ROIs, spreading across the frontal, parietal, temporal and 338 

cerebellar cortices (Dubois et al., 2018) (Fig. 7A). For working memory, the identified ROIs were 339 

mainly located in the prefrontal, parietal, medial temporal and cerebellar cortices (Rottschy et al., 340 

2012) (Fig. 7B). For openness, the identified ROIs were mainly located in the left frontal lobe and 341 

cerebellum (Adelstein et al., 2011) (Fig. 7C). For emotion recognition, the identified ROIs were 342 
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mainly located in the right hemisphere, covering the frontal cortex, TPJ and subcortical regions 343 

(Ruffman et al., 2008) (Fig. 7D). Furthermore, different fMRI paradigms exhibited distinct spatial 344 

patterns of predictive ROIs for the same phenotype (Jaccard similarity: 0.02 to 0.10; Fig. 7E). 345 

 346 
Figure 7. Predictive ROIs for each phenotype and fMRI paradigm with significant predictions. (A-D) 347 

The predictive ROIs (marked in red) are identified for each fMRI paradigm with significant predictions (𝑝𝑝 <348 

0.05 in Fig. 5) for fluid intelligence (A), working memory (B), openness (C) and emotion recognition (D) 349 

separately. Only the ROIs for which the permutation feature importance over all CV folds and repetitions is 350 

significantly larger than zero (permutation-based, corrected 𝑝𝑝 < 0.05, with 5000 permutations) are identified 351 

as predictive ROIs. (E) The similarity in the spatial patterns of the predictive ROIs is assessed by the 352 

Jaccard similarity for each pair of fMRI paradigms within each phenotype separately. No result is plotted for 353 

emotion recognition, as only one fMRI paradigm (the social task) achieves a significant result.  354 
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2.8 Impact of different choices of the number of PCs on prediction performance 355 

Our previous analyses of TOPF focused on using PC1 time series as shared responses, as we 356 

assume that PC1 best reflects the stimulus-evoked activity. Here, we further investigate the 357 

impact of different choices of PCs on prediction performance of TOPF. First, we evaluated the 358 

number of significant PCs for each ROI and each fMRI paradigm by using a conservative 359 

permutation test, where the null distribution was built with the amount of variance explained by 360 

PC1 from 10000 permutations (Di & Biswal, 2022; Kauppi et al., 2010); a PC is considered to be 361 

meaningful if the variance explained by it significantly exceeds chance level. For all fMRI 362 

paradigms, most ROIs (237 - 266/268) exhibited a significant PC1 (𝑝𝑝 < 0.05; Fig. 8A), 2 - 40 ROIs 363 

had a significant PC2, and no ROIs had significant results for the later PCs. Therefore, our 364 

following analyses focused on PC1 and PC2. 365 

The variance explained by PC1 varied remarkably across ROIs for all the fMRI paradigms 366 

(ranging from 1.6% to 57.0%; Fig. 8B), with the mean across ROIs achieving around 12% for NV 367 

and 8% for task data. ROIs for which PC1 explained larger amounts of variance were distributed 368 

in visual, auditory and sensory association cortices for NV paradigms and in task-evoked regions 369 

for task paradigms (Fig. S11).  By contrast, PC2 explained around 4% and 3% of the total 370 

variance averaged across ROIs for NV and task data, respectively, with the explained variance of 371 

individual ROIs ranging from 1.6% to 8.4%.  372 

For phenotype prediction, the average performance over all fMRI paradigms was better 373 

for PC1-based than for PC2-based TOPF for all the four phenotypes (Fig. 8C). As the amount of 374 

explained variance may also influence the utility of the PCs for prediction, we additionally 375 

conducted a feature-selection step with five different thresholds of explained variance (0%, 3%, 376 

5%, 7%, 10%). The feature selection was conducted across all ROIs for PC1, PC2 and PC1+2 377 

(using loadings of both PC1 and PC2 as features) separately, resulting in 15 different settings. 378 

Overall, prediction performance was improved after feature selection, and the best performance 379 

was achieved in most cases by using PC1- or PC1+2-based prediction (Fig. S12). 380 
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 381 
Figure 8. Comparisons across different choices of PCs for TOPF. (A) Number of ROIs with significant 382 

PCs (N_sig) for each of the first five PCs. Significance of each PC of each ROI is evaluated separately via a 383 

conservative permutation test, where the null distribution is built with the amount of variance explained by 384 

PC1 of the given ROI from 10000 permutations (Di & Biswal, 2022). The p-value threshold here is set to 385 

0.05. (B) Distribution of the amount of variance explained by PC1 and PC2 separately for individual fMRI 386 

paradigms. (C) Prediction performance of PC1- and PC2-based TOPF separately. Each condition is 387 

evaluated via 10 repetitions of 10-fold CVs for each fMRI paradigm and phenotype separately. Results 388 

shown are aggregated across all fMRI paradigms for each phenotype. Prediction performance is measured 389 

as the Pearson's correlation coefficient (𝑟𝑟) between the residuals of predicted (pred_res) and observed 390 

scores (obs_res) after regressing out sex, age and head motion over all subjects (𝑛𝑛 = 179).  Boxes: upper 391 

and lower whiskers: maximum and minimum; bars within each box from top to bottom: third quartile, median 392 

and first quartile; green triangles: means. 393 

3. Discussion  394 

NV settings provide promising opportunities for facilitating our understanding of individual 395 

differences in brain functioning, yet they present new challenges for fMRI data analysis. In this 396 

study, we propose a simple computational framework, TOPF, which allows us to characterise 397 

stimulus-evoked activity topographies in individuals and investigate their behavioural relevance 398 

using machine learning-based predictive modelling. By validating TOPF on both NV and task 399 
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fMRI data, we demonstrate that the individual-specific topographies conceptualised by TOPF 400 

provide a practical characterisation for individual activity patterns during NV. These topographies 401 

also predict multiple behavioural phenotypes and often outperform FC-based features. 402 

Additionally, the learned predictive models provide neurobiologically meaningful interpretations. 403 

TOPF is a generic framework that can be readily adapted for clinical applications, thus holding 404 

great potential for advancing basic and clinical neuroscience studies. 405 

3.1 Data-driven perspective on stimulus-evoked activity 406 

While classic ICA and FC-based approaches are useful for studying individual differences in the 407 

interactions among brain regions, individual differences in brain activity directly driven by the 408 

naturalistic stimulus, that is, the stimulus-evoked activity, might be of more interest for NV fMRI 409 

studies. On the other hand, the utility of GLM-based approaches to capture individual stimulus-410 

evoked activity on NV fMRI data is limited by their requirement for accurate stimulus descriptions. 411 

Our TOPF approach avoids these issues by identifying stimulus-evoked activity in a data-driven 412 

way. It detects stimulus-evoked time courses shared across subjects for each ROI separately and 413 

characterises individual activity patterns by the individual-specific expression (termed IE) of these 414 

shared responses across ROIs (termed individual-specific topography). 415 

Similar to GLM, TOPF also defines a (few) consistent response time course(s) across 416 

subjects (TOPF: PC time courses; GLM: predefined regressors) and uses them as a common 417 

basis to estimate individual task/stimulus-evoked activity (TOPF: PC loadings; GLM: regression 418 

coefficients). However, TOPF, as a data-driven approach, does not rely on prior knowledge about 419 

relevant features of the presented naturalistic stimulus for extracting stimulus-evoked signals as 420 

GLM does, thus highly suitable for dealing with fMRI data under NV and possibly other complex 421 

naturalistic conditions. Notably, whereas GLM picks up individual idiosyncrasies by using 422 

predefined models to fit individual fMRI signals, TOPF uses IEs of shared responses to reflect 423 

individual variation. Even so, TOPF still leaves enough room for preserving individual differences. 424 

Moreover, the data-driven nature may allow TOPF to capture unique individual differences that 425 

are not induced by explicitly predefined task designs (Bolt et al., 2018) and thus may not be 426 

detected by GLM. Future work could compare the prediction performance of TOPF and GLM-427 
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based methods to better understand their differences in the characterisation of individual 428 

differences. 429 

TOPF is also closely related to several existing data-driven approaches for detecting 430 

stimulus-evoked activity. A common rationale behind these data-driven approaches is that any 431 

temporal variance shared across subjects can only originate in the processing of the same 432 

stimulus. For example, the commonly used ISC approach often computes the pairwise or leave-433 

one-out (LOO) correlation (i.e., correlation between the fMRI time series of a subject and the time 434 

series averaged across the other subjects) to reflect the similarity in brain activity between 435 

subjects (Finn et al., 2020; Nastase et al., 2019). Although similar, PC1 loadings have been 436 

shown in a previous study to be more computationally efficient than the LOO correlations (Di & 437 

Biswal, 2022), thus allowing for more efficient integrations with machine learning models, 438 

especially when the number of subjects/ROIs is large. More importantly, TOPF aims to use an 439 

“absolute” expression of a group-level basis to reflect individual activity instead of providing a 440 

relative measure. While SRM (Chen et al., 2015) and hyperalignment (Haxby et al., 2011) 441 

approaches adopt similar logic, they often focus on more fine-grained individual functional 442 

topographies within certain brain regions rather than the whole-brain topographies. Tensor-ICA 443 

(Beckmann & Smith, 2005; Campbell et al., 2015), on the other hand, identifies a set of common 444 

stimulus-evoked spatial components throughout the whole brain and associated time courses, 445 

with individual differences being characterised for each component. By contrast, TOPF 446 

characterises individual variation by ROI, delineating individual topographies across the whole 447 

brain at a resolution suitable for machine learning-based predictions. 448 

3.2 Individual differences in activity topographies evoked during NV 449 

TOPF characterises individual variation by IEs of stimulus-evoked responses that are shared 450 

across subjects rather than directly captures individual idiosyncratic responses. Although the 451 

latter might be conceptually more desirable, we show that the IEs also captured considerable and 452 

meaningful individual differences. These IEs were more variable across subjects in frontoparietal, 453 

limbic, subcortical and default mode network regions than in sensory regions. These results 454 

partially align with previous studies observing higher intersubject variability in FC patterns of brain 455 
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regions associated with cognitive control in both RS (Finn et al., 2015; Laumann et al., 2015; 456 

Mueller et al., 2013) and NV settings (Vanderwal et al., 2017). Moreover, for the sensory regions, 457 

although the intersubject variability was relatively small, patterns of the IEs across subjects were 458 

stable across movie clips and thus less sensitive to the specific movie content. This is in line with 459 

recent studies showing that the way the brain processes complex sensory and social information 460 

during NV may be an intrinsic characteristic of individuals (Gao et al., 2020; Lahnakoski et al., 461 

2012) and associated with brain baseline functional organisation (Gruskin & Patel, 2022). We 462 

note that further work is needed to assess whether our findings here are generalisable across 463 

different movie types. 464 

3.3 Comparisons across fMRI paradigms for TOPF-based phenotype prediction 465 

NV fMRI paradigms performed better than the conventional task paradigms for predicting working 466 

memory and openness. This result is in line with previous studies discovering significant 467 

relationships between individual differences in brain responses during NV and individual 468 

differences in personality traits and working memory capability by using univariate analyses (Finn 469 

et al., 2018; Finn et al., 2020). The better performance of these NV paradigms suggests that 470 

watching these movies may evoke stronger individual differences relevant to these phenotypes 471 

than performing those strictly-controlled tasks. Such advantages of NV settings may arise from 472 

improved subject compliance and engagement, reduced head motion during the scan (Vanderwal 473 

et al., 2017), as well as presence of brain states and cognitive processes that are uniquely 474 

evoked when processing complex naturalistic stimuli (Finn et al., 2017; Hasson et al., 2015; Van 475 

der Meer et al., 2020).  476 

Different movies showed substantially different prediction performance, with the 477 

observation remaining the same after we controlled for scan (movie) length. When movie length 478 

was shortened, the prediction performance slightly degraded in general but in certain cases was 479 

even improved. These results suggest that movie length may not be a key factor that determines 480 

the utility of a movie for phenotype prediction. The differences in prediction performance across 481 

movies may actually result from various factors rather than purely movie length. For instance, 482 

movies with richer social content tend to evoke greater inter-subject variability in interpretations of 483 
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the movies, thus potentially reflecting stronger behaviourally relevant individual differences (Finn 484 

et al., 2018; Gruskin et al., 2020). Commercial movies can evoke more reliable responses across 485 

subjects than real-life, unedited movies by using professional filmmaking techniques to enhance 486 

audiences’ engagement (Hasson et al., 2010). Furthermore, familiarity with the movies (e.g., 487 

whether subjects have seen the movie before) may also affect subjects’ interpretations of the 488 

movie (Jääskeläinen et al., 2008), and thus be important to consider when understanding the 489 

evoked individual differences in neural responses. Future work is needed to better understand 490 

which factors and how they influence prediction performance of behaviour in NV settings by using 491 

more movies with different features.  492 

NV fMRI paradigms did not always achieve the best performance for predicting various 493 

phenotypes. For fluid intelligence and emotion recognition scores, the language and social tasks 494 

performed best, respectively. One distinct feature of these two tasks is that their experimental 495 

designs and the brain function they target are closely related to the respective phenotype they 496 

predict. Brain activations of language comprehension and maths processing in the HCP language 497 

task have shown significant genetic correlations with fluid intelligence (Le Guen et al., 2018). 498 

Emotion recognition has been acknowledged as a core aspect of social cognition (Gallese et al., 499 

2004) and the two brain functions have shown overlapping activations in an fMRI study (Mier et 500 

al., 2010). These findings suggest that the choice of fMRI paradigms for phenotype prediction 501 

should be made individually for each specific research question.  502 

3.4 Comparisons across methods for phenotype prediction 503 

Motivated by the development of machine learning techniques, a growing body of work has 504 

recently applied machine learning predictive models on various brain measures to predict 505 

individual phenotypes (Dosenbach et al., 2010; Finn et al., 2015; Nostro et al., 2018; Weis et al., 506 

2020). Most brain measures used for phenotype prediction in fMRI studies have so far been 507 

constructed based on FC. In this study, the overall prediction performance of TOPF across fMRI 508 

paradigms and phenotypes was similar to and in most cases better than that of the three popular 509 

FC-based prediction approaches (i.e., WConn, NConn and CPM), demonstrating the validity of 510 

TOPF. More importantly, this result shows that, beyond FC-based brain measures, individual 511 
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differences in evoked responses are also useful for phenotype prediction. Whereas FC depicts 512 

individual differences in interactions between brain regions, TOPF directly captures individual 513 

differences in the activity of each brain region, and thus they may reflect different aspects of brain 514 

function. In fact, previous studies have shown that individual phenotypes can be predicted from 515 

individual differences in brain activations on task fMRI data (Greene et al., 2020; Sripada et al., 516 

2020), which are computationally different but conceptually similar to the individual differences 517 

captured by TOPF.  518 

 For predicting fluid intelligence and openness, TOPF on average outperformed the FC-519 

based methods. Many previous studies have reliably predicted fluid intelligence and openness 520 

from resting state fMRI data (Smith et al., 2013; Dubois et al., 2018b). Recent evidence has 521 

shown that task- or movie-induced brain states can further improve prediction of these 522 

phenotypes, by amplifying or bringing out relevant individual differences that are unique to the 523 

evoked brain states (Greene et al., 2018; Finn & Bandettini, 2021). These findings may suggest 524 

that TOPF better captured individual differences related to these phenotypes by having a higher 525 

level of focus on the evoked brain signals compared to the FC-based methods. For emotion 526 

recognition scores, neither TOPF nor the FC-based methods achieved a satisfying prediction 527 

performance. This result is consistent with previous findings that emotional traits are in general 528 

harder to predict than cognitive traits (Finn & Bandettini, 2021, Kong et al., 2019). One 529 

explanation could be that individual differences in emotional traits are not effectively reflected by 530 

brain measures in activity and FC. Alternatively, this result may stem from limitations in reliability 531 

and validity of the phenotypic measures (Tiego & Fornito, 2023). For predicting working memory 532 

scores, whether TOPF outperformed the other methods largely depended on the fMRI paradigms. 533 

Previous studies have shown that different tasks or naturalistic stimuli can elicit highly distinct 534 

individual differences and brain states (Finn et al., 2017; Hasson et al., 2008a). For example, 535 

watching certain movie clips has been shown to elicit a unique hierarchical organisation of 536 

working memory (Hasson et al., 2015). On the other hand, activity- and FC-based features may 537 

capture unique and complementary information in individual differences that are useful in different 538 

situations (Di & Biswal, 2019; Tsvetanov et al., 2018). Further investigation is needed to better 539 
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understand the differences across fMRI paradigms and between FC- and activity-based features. 540 

Future work could also consider combining FC- and activity-based features to further improve 541 

prediction performance (Greene et al., 2020). 542 

Computationally, TOPF uses a remarkably smaller number of features (𝑛𝑛 ROIs) than 543 

approaches using whole-brain connectomes as features (𝑛𝑛(𝑛𝑛 − 1)/2 connections). This feature of 544 

TOPF greatly eases the problem of overfitting and reduces the number of observations (i.e., 545 

subjects) needed for a meaningful prediction, alleviating the critical problem of relatively small 546 

sample sizes of the current public NV fMRI datasets. Furthermore, different from FC-based 547 

approaches which are often applied to fMRI data of individual subjects, TOPF captures individual 548 

differences via an inter-subject approach. The latter is particularly useful for analysing NV fMRI 549 

data, which separates stimulus-driven responses based on their synchronisation across subjects 550 

(Hasson et al., 2004; Nastase et al., 2019; Simony & Chang, 2020). In TOPF, we use PCA to 551 

detect shared stimulus-evoked responses and their loadings onto subjects’ fMRI signals to reflect 552 

individual differences, which have shown potential for phenotype prediction in a recent study (Di 553 

and Biswal, 2022). It is worth noting that from a computational perspective, TOPF uses PCA to 554 

perform a dimensionality reduction on the subject dimension. This distinguishes our study from 555 

the majority of fMRI studies which use PCA to reduce the dimensions of spatial or temporal 556 

features of fMRI data.  557 

Moreover, there are other inter-subject approaches that could be used for studying 558 

individual differences in brain activity during NV from different perspectives. For example, inter-559 

subject functional correlation (Simony et al., 2016) can capture stimulus-driven FC profiles of 560 

individuals, while SRM (Chen et al., 2015) and hyperalignment (Haxby et al., 2011) can offer a 561 

more fine-grained representation of individual idiosyncrasies in brain functional topographies. A 562 

recent study has shown that functionally hyperaligned, fine-grained FC profiles can remarkably 563 

improve prediction performance for behaviour on RS and task fMRI data (Feilong et al., 2021). 564 

Future work may also integrate these inter-subject approaches into a machine learning 565 

framework as a preprocessing or feature extraction step for phenotype prediction on NV fMRI 566 

data. 567 
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3.5 Different choices of number of PCs for TOPF-based phenotype prediction 568 

In general, PC1 outperformed PC2-based TOPF for predicting the four phenotypes. This result 569 

fits our expectation that PC1 better reflects shared brain activity across subjects and provides 570 

more reliable grounds for characterising meaningful individual differences than the later PCs. 571 

Furthermore, the performance of TOPF was improved overall when applying a threshold to 572 

preserve only the PCs for which the captured variance exceeded a certain amount. This result 573 

further supports our assumption that PCs capturing larger amounts of variance tend to reflect 574 

more stable and meaningful individual differences by their loadings. However, we also observed 575 

that combining PC1 and PC2-based features can sometimes improve prediction performance. 576 

This result suggests that different PCs may reflect different aspects of a cognitive process, e.g., 577 

different consistent responses of different subject groups, in particular for clinical and ageing 578 

populations (Byrge et al., 2015; Campbell et al., 2015; Di & Biswal, 2022). Therefore, including 579 

multiple PCs may provide a more comprehensive characterisation of individual differences across 580 

the whole sample and thus benefit behavioural prediction. 581 

3.6 Interpretations of identified phenotype-related brain regions 582 

In addition to good prediction performance, we also expected TOPF to provide good 583 

interpretability so that it can help understand the brain-behaviour relationship. In general, the 584 

predictive brain regions we identified in this study showed overlaps with previous literature. For 585 

example, the ROIs identified for fluid intelligence and working memory were mainly located in 586 

brain regions supporting cognitive functions, e.g., frontal and parietal cortices (Jung & Haier, 587 

2007), showing overlaps with findings of previous meta-analytic studies (Rottschy et al., 2012). 588 

The association between the left frontal lobe and the openness personality trait has been 589 

reported by previous studies using conventional task fMRI data and brain structural data 590 

(DeYoung, 2010; Vartanian et al., 2018). The TPJ identified for emotion recognition has been 591 

recognised as a key region for social and emotion processing (Van Overwalle, 2009). These 592 

results demonstrate that TOPF holds great potential for facilitating our understanding of the 593 

neurobiological bases of behaviour. Furthermore, the patterns of predictive ROIs identified for 594 
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TOPF varied largely across fMRI paradigms, indicating that different tasks and movies may elicit 595 

unique neural processes related to the same behaviour or phenotype (Geerligs et al., 2015). We 596 

expect that future studies on the important question of whether and how brain function under 597 

naturalistic conditions differs from that measured in strictly controlled task paradigms can be 598 

facilitated by using our approach. 599 

3.7 Limitations and future directions 600 

We note several limitations of this study as well as possible future directions. First, as our interest 601 

in this study focuses on individual differences in evoked brain activity, we only included the first 602 

two PCs that captured the largest amount of variance in our analyses for TOPF. Previous studies 603 

have shown that a low-dimensional representation of brain activity and dynamics can reflect 604 

meaningful individual differences, although such representation may capture only a small part of 605 

the total variance (Misra et al., 2021; Shine et al., 2019). These findings are similar to our result in 606 

this study where the first two PCs on average captured less than 20% the total variance. 607 

However, it may still be interesting for future studies on NV fMRI to explore the remaining 608 

variance, as it contains a large part of individual idiosyncratic information that could potentially be 609 

useful for prediction of phenotypes beyond cognition. Besides, the orthogonality of these PCs 610 

may complicate their interpretations. Other methods, such as non-negative matrix factorisation 611 

(Lee & Seung, 1999), might be used to detect the shared responses in future work for better 612 

interpretability.  613 

Second, although we showed that TOPF can achieve significant performance on both 614 

naturalistic paradigms and conventional tasks, we note that these two are essentially different 615 

from each other. While naturalistic settings use a common, continuous stimulus for all subjects 616 

during the whole scan, tasks often use a block or event-related design. For block-designed tasks, 617 

the exact stimulus content and event onset timing within each block may not always be consistent 618 

across subjects. However, our results in this study demonstrate that TOPF is not interested in 619 

specific events, but rather the performance of the task across the full block. Further investigation 620 

is needed to better understand the temporal variance shared across subjects and individual 621 

differences captured by TOPF as well as other inter-subject approaches. Future work could also 622 
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seek to improve temporal alignment across subjects for better performance of inter-subject 623 

approaches (Joshi et al., 2018). Besides, whether these data-driven approaches are suitable for 624 

analysing event-related designs remains to be tested.  625 

Third, the performance of phenotype prediction achieved up to r = 0.30 in our study, while 626 

larger r values have been reported by previous studies. Such a difference may be a consequence 627 

of various factors, such as the relatively small size of our sample, whether and how confounding 628 

variables are controlled for, whether and how data leakage is dealt with (e.g., controlling for family 629 

structure of the HCP samples) and the complexity of machine learning models (e.g., linear 630 

regression vs. deep neural networks). Moreover, we used all ROIs as features for prediction in 631 

our main analyses. It is possible that the variance captured in some ROIs may not reflect the 632 

cognitive processes relevant to the phenotype of interest, but rather reflect, for example, the 633 

processing of low-level features of movie stimuli, such as brightness and audio power (Finn & 634 

Bandettini, 2021; Hasson et al., 2008b). Future work could further evaluate TOPF (e.g., by using 635 

other datasets) and optimise predictive models (e.g., by preserving only phenotype-related 636 

features or using more advanced models). We also note that we chose to use simple models with 637 

minimal machine learning steps in this study because our main aim here is to draw attention 638 

especially from NV fMRI studies to the utility of individual differences in evoked brain activity for 639 

phenotype prediction.  640 

Fourth, we characterised individual differences in brain activity during watching each 641 

whole movie clip. Actually, brain activity during NV is highly dynamic and such neural dynamics 642 

may also underlie cognitive processing and behaviour (Betzel et al., 2020; Van der Meer et al., 643 

2020). Future work could extend TOPF to capturing individual differences in a finer temporal 644 

scale to pursue a better understanding of the brain-behaviour relationships and better prediction 645 

performance (Yang et al., 2020).  646 

Finally, whole-brain parcellations play an important role in TOPF because they can 647 

reduce the spatial dimensionality of fMRI data in a biologically meaningful way (Eickhoff et al., 648 

2018) and ease the computational load for subsequent analyses. As the best-suited parcellations 649 

may vary across different brain states and for answering different research questions (Salehi et 650 
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al., 2020), how different parcellation schemes influence the performance of TOPF needs further 651 

investigation. 652 

3.8 Conclusions 653 

In sum, the TOPF approach presented here provides a simple and intuitive tool for studying 654 

individual differences in evoked brain activity and their behavioural relevance. Essentially, TOPF 655 

highlights the value of investigating whole-brain evoked activity topographies and applying 656 

machine learning tools for understanding brain-behaviour relationships on NV fMRI data. 657 

Although in this study we only test TOPF on healthy participants, this principled and flexible 658 

approach should be readily adapted for clinical applications. We envision that TOPF will provide a 659 

powerful tool for not only predicting symptom severity or clinical outcomes but also identifying 660 

potential biomarkers in clinical neuroscience studies. 661 

4. Materials and Methods 662 

4.1 Datasets 663 

All participants used in this study were from the HCP S1200 release (Van Essen et al., 2013). 664 

Informed consent was obtained from all participants and data acquisition was approved by the 665 

Washington University institutional review board. An overview of all data used in this study can be 666 

found in Tables S1 and S2. Detailed acquisition protocols and study designs can be found 667 

elsewhere (Barch et al., 2013; Van Essen et al., 2013). 668 

Dataset1 was from the HCP “100 Unrelated Subjects” subset (n = 100; age range: 22-36 669 

years; mean age = 29.11±3.68 years; 54 females/46 males) of the full HCP dataset. This subset 670 

was selected because it contained only unrelated subjects, which straightforwardly avoided the 671 

possible bias from the genetic relatedness in the full HCP dataset. All subjects were scanned on 672 

a 3T Siemens scanner (TR = 720 ms, TE = 33.1 ms, resolution = 2.0 mm3). Each subject was 673 

required to complete seven different tasks during the scan in two fMRI sessions, and each task 674 

was performed in two runs with different phase-encoding directions. Among these tasks, we 675 

chose the motor task and the social cognition (social) task as two representative tasks because 676 
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they tapped into two different levels of the brain functional hierarchy: whereas the motor task 677 

mainly involved simple movements of body parts, the social task involved one higher-order 678 

cognitive function of the brain, i.e., the theory of mind ability. For both tasks, we limited our 679 

analysis to the data from the first run (with right-to-left phase encoding). The scan duration was 680 

3’34” (284 TRs) for the motor task and 3’27” (274 TRs) for the social task.  681 

Dataset2 was from the HCP 7T subset (n = 184; age range: 22-36 years; mean age = 682 

29.43±3.35 years; 112 females/72 males). Subjects in dataset2 contained twins and siblings 683 

from 93 unique families. This subset included all available subjects in the full HCP dataset that 684 

had NV fMRI data. Each subject underwent four NV fMRI runs in two sessions on a 7T Siemens 685 

scanner (TR = 1000 ms, TE = 22.2 ms, resolution = 1.6 mm3). Each run lasted approximately 15 686 

mins, where subjects were presented with a sequence of different short movie clips (4-5 clips) 687 

interleaved with 20 s rest blocks. Detailed descriptions of the movie clips have been published 688 

elsewhere (Finn & Bandettini, 2021). In this study, we limited our analysis to the NV fMRI data 689 

from the first run because the movie stimuli used in the other three runs had slight differences in 690 

timing across subjects, which may potentially affect the results. Moreover, only the movie clips 691 

over 3 mins from the first run were analysed, resulting in three movie clips: “Two Men” (Movie1), 692 

“Welcome to Bridgeville” (Movie2), and “Pockets” (Movie3). Their scan durations were 4’04” (244 693 

TRs), 03’41” (221 TRs) and 03’08” (189 TRs), respectively.  694 

Apart from the NV fMRI data, task-based and RS fMRI data of all subjects in dataset2 695 

were also included in our analysis for comparison. All task-based fMRI images were acquired on 696 

a 3T Siemens scanner with the same protocols as described above for dataset1. Only the data of 697 

the motor (3’34”), social (3’27”), and language tasks (3’57”) from the first run (with right-to-left 698 

phase encoding) were included. The RS fMRI images were acquired before the NV fMRI run we 699 

used in this study in the same session on a 7T Siemens scanner with the same imaging 700 

parameters as described above. The scan duration of the RS fMRI run was 15 mins (900 TRs).  701 

A total of 8 different behavioural phenotypes, covering fluid intelligence, working memory, 702 

personality and emotion recognition were studied here. Each phenotype was measured by a 703 

single summary score for each subject (fluid intelligence: “PMAT24_A_CR”, working memory: 704 
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“ListSort_Unadj”, openness: “NEOFAC_O”, agreeableness: “NEOFAC_A”, conscientiousness: 705 

“NEOFAC_C”, extraversion: “NEOFAC_E”, neuroticism: “NEOFAC_N”, and emotion recognition: 706 

“ER40_CR”). Descriptive statistics of these 8 measures and their respective behavioural tests are 707 

provided in Table S2. Detailed descriptions of the tests to measure these phenotypes can be 708 

found elsewhere (Barch et al., 2013). Five subjects were excluded due to the lack of the complete 709 

fMRI and behavioural data mentioned above, resulting in a total of 179 subjects (108 females/71 710 

males) for dataset2.  711 

4.2 fMRI data preprocessing 712 

All 3T task-based fMRI images were preprocessed with the HCP minimal preprocessing pipeline 713 

(Glasser et al., 2013), which includes gradient unwarping, motion correction, spatial normalisation 714 

to the Montreal Neurological Institute (MNI) space and intensity normalisation. We further 715 

preprocessed these images by regressing out Friston’s 24 head motion parameters (Friston et al., 716 

1996), as well as the mean time series of white matter and cerebrospinal fluid and the linear 717 

trend, using the Data Processing and Analysis for Brain Imaging (DPABI) toolbox (Yan et al., 718 

2016) (http://rfmri.org/dpabi) in Matlab R2019a. All 7T NV and RS fMRI images were 719 

preprocessed with the standard HCP pipelines (Glasser et al., 2013), including correction for 720 

distortion and motion, registration to the MNI space, high-pass filtering, removal of 24 motion 721 

parameters and FIX-denoising (Salimi-Khorshidi et al., 2014). The first 10 volumes of the NV 722 

fMRI data were discarded for obtaining stable signals for each movie clip separately. For all the 723 

NV, task-based and RS fMRI images, the whole brain was divided into 268 ROIs using a 724 

functionally defined parcellation (Shen et al., 2013) that has been widely applied to the HCP 725 

dataset. The parcellation was resampled to match the spatial resolutions of the corresponding 726 

fMRI images. Within each ROI, the mean time series over all voxels was extracted and z-score 727 

normalised (i.e., zero-mean with unit-variance) for each subject. Head motion was measured by 728 

the relative root-mean-square framewise displacement (RMS-FD; 729 

“Movement_RelativeRMS_mean.txt”) for each subject and each fMRI paradigm. The RMS-FD 730 

values of all subjects from all these fMRI paradigms were less than 0.5 mm, and thus no subject 731 

was further excluded from the analysis. 732 

http://rfmri.org/dpabi
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4.3 TOPF: Identification of shared responses and individual-specific topographies 733 

The first step of TOPF is to delineate individual stimulus-evoked brain activity patterns across 734 

ROIs from NV fMRI data in a data-driven manner. For NV fMRI signals, it is often assumed that, 735 

in each brain region, for a given subject 𝑖𝑖, the observed fMRI time series 𝑥𝑥𝑖𝑖 consists of three time 736 

series components (Nastase et al., 2019): 737 

𝑥𝑥𝑖𝑖(𝑡𝑡)  = 𝑐𝑐(𝑡𝑡) + 𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝜀𝜀𝑖𝑖(𝑡𝑡)                                                       (1) 738 

where 𝑐𝑐 is a stimulus-evoked component that is shared across all subjects (denoted as shared 739 

response), 𝑖𝑖𝑖𝑖𝑖𝑖 is also stimulus-evoked but unique to each individual (denoted as idiosyncratic 740 

response), 𝜀𝜀𝑖𝑖 is the residual representing the other signal components, and 𝑡𝑡 is a specific time 741 

point. However, it is usually difficult to identify the 𝑖𝑖𝑖𝑖𝑖𝑖s and later link them to other known aspects 742 

of the individuals (e.g., behavioural performance or personal traits). To represent individual 743 

differences in these stimulus-evoked responses, recent studies have modified the formulation as 744 

follows (Finn et al., 2020; Di & Biswal, 2022): 745 

𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑐𝑐(𝑡𝑡) + 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝜀𝜀𝑖𝑖(𝑡𝑡).                                                         (2) 746 

This formulation is based on an assumption that there is some consistent response, 𝑖𝑖𝑖𝑖, across 747 

subjects and it is expressed differently across individuals by 𝛽𝛽𝑖𝑖. Note that 𝑖𝑖𝑖𝑖 and 𝑐𝑐 in this 748 

equation is interchangeable as they both represent some consistent response across subjects. 749 

Actually, it is possible that there are multiple consistent responses underlying the brain activity 750 

across subjects. Therefore, in this study, we further modify the formulation as: 751 

𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝛽𝛽𝑖𝑖1𝑐𝑐1(𝑡𝑡) +  𝛽𝛽𝑖𝑖2𝑐𝑐2(𝑡𝑡) + ⋯+ 𝛽𝛽𝑖𝑖𝑖𝑖𝑐𝑐𝑘𝑘(𝑡𝑡) + 𝜀𝜀𝑖𝑖(𝑡𝑡),                                  (3) 752 

where each 𝑐𝑐𝑗𝑗 is a consistent response across subjects, which we refer to as a shared response. 753 

Each scaler 𝛽𝛽𝑖𝑖𝑖𝑖 represents the individual-specific expression (IE) level of 𝑐𝑐𝑗𝑗 for subject 𝑖𝑖. That 754 

means, we define a set of common bases (𝑐𝑐𝑗𝑗) across subjects to reflect the stimulus-evoked brain 755 

activity and summarise individual differences therein as the IE values of each 𝑐𝑐𝑗𝑗, i.e., 𝛽𝛽𝑖𝑖𝑖𝑖. 756 

In this work, we applied PCA to identify the shared responses 𝑐𝑐𝑗𝑗 and their corresponding 757 

IE values of each subject 𝛽𝛽𝑖𝑖𝑖𝑖 for each ROI separately. Specifically, for each ROI, we first 758 

constructed a data matrix of preprocessed fMRI time series across subjects, 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2,. . . , 𝑥𝑥𝑛𝑛] ∈759 
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𝑅𝑅𝑑𝑑×𝑛𝑛, where 𝑛𝑛 is the number of subjects, 𝑑𝑑 is the number of time points, and 𝑥𝑥𝑖𝑖 is the z-score 760 

normalised time series for subject 𝑖𝑖. A PCA was then performed on 𝑋𝑋, where the subjects were 761 

treated as variables and the time points as samples. The data matrix 𝑋𝑋 of each ROI can be 762 

written as: 763 

 𝑋𝑋 = 𝐶𝐶 𝑊𝑊𝑇𝑇,                                                                     (4) 764 

where each column, 𝑐𝑐𝑗𝑗, of 𝐶𝐶 = [𝑐𝑐1, 𝑐𝑐2,. . . , 𝑐𝑐𝑝𝑝] ∈ 𝑅𝑅𝑑𝑑×𝑝𝑝, denotes the 𝑗𝑗-th PC scores across time, each 765 

column, 𝑤𝑤𝑗𝑗, of 𝑊𝑊 = [𝑤𝑤1,𝑤𝑤2,. . . ,𝑤𝑤𝑝𝑝] ∈ 𝑅𝑅𝑛𝑛×𝑝𝑝, denotes the weights of the 𝑗𝑗-th PC across subjects, 766 

and 𝑝𝑝 denotes the total number of PCs. These PCs are ordered according to the amount of 767 

variance they explain and 𝑐𝑐1 explains the largest amount of variance. The time series of subject 𝑖𝑖 768 

(𝑥𝑥𝑖𝑖) can thus be represented as: 769 

𝑥𝑥𝑖𝑖 = 𝑤𝑤𝑖𝑖1𝑐𝑐1 + 𝑤𝑤𝑖𝑖2𝑐𝑐2 + ⋯+ 𝑤𝑤𝑖𝑖𝑖𝑖𝑐𝑐𝑝𝑝,                                              (5) 770 

where 𝑤𝑤𝑖𝑖𝑖𝑖 represents the weight of subject 𝑖𝑖 in PC 𝑗𝑗. We assume that the larger amount of 771 

variance a PC captures, the more likely it reflects a meaningful shared response. Therefore, we 772 

considered only the first few PCs that explain the largest amount of variance as shared 773 

responses for subsequent analyses. The IE value of PC 𝑗𝑗 in subject 𝑖𝑖 , 𝛽𝛽𝑖𝑖𝑖𝑖, was operationalised 774 

as the loading of 𝑐𝑐𝑗𝑗 onto 𝑥𝑥𝑖𝑖, which is equivalent to the PC weight 𝑤𝑤𝑖𝑖𝑖𝑖 multiplied by the square root 775 

of the eigenvalue of 𝑐𝑐𝑗𝑗. This procedure was repeated for each ROI separately. Finally, for each 776 

subject, we collected the PC loadings of that subject across all ROIs to reflect a brain activity 777 

pattern specific to that subject, a construct we refer to as individual-specific topography. PCA was 778 

implemented in Python using the “sklearn.decomposition.PCA” function in the scikit-learn 779 

package (Pedregosa et al., 2011) (https://scikit-learn.org/stable/). 780 

4.4 Validation of TOPF for identifying task-evoked activity 781 

The validity of TOPF in capturing stimulus-evoked activity was assessed on dataset1, which 782 

contained fMRI data of two conventional tasks with known timing of individual events. We note 783 

that as TOPF is a fully data-driven approach, it does not rely on information of the event structure 784 

of the tasks; instead, TOPF derives the topography and the temporal profile of shared responses 785 

across the whole scan of each task.  786 

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition
https://scikit-learn.org/stable/
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For each task, we applied a PCA to each ROI separately. We constructed a group-level 787 

topography across ROIs by using the variance explained by the PC1 time series to reflect group-788 

level “activation” evoked by the task. This topography was then compared against a group-level, 789 

task-evoked activation (z-score) map derived by GLM by Pearson’s correlation. The GLM-derived 790 

map was provided by the HCP and downloaded from NeuroVault (Gorgolewski et al., 2015) 791 

(https://neurovault.org). We then conducted similar analyses at an individual-subject level. For 792 

each subject, the TOPF-derived individual-specific topography (i.e., PC1 loadings across all 793 

ROIs) was compared to the GLM-derived activation map of the given subject (available from the 794 

HCP) by Pearson’s correlation. The amount of captured individual differences was quantified for 795 

each approach by between-subject correlations. Note that the GLM-derived activation maps were 796 

initially generated for each experimental condition separately (e.g., left-hand movement or tongue 797 

movement), whereas the TOPF-identified topographies reflected the overall brain activity across 798 

all experimental conditions within a task. Therefore, before each comparison, we aggregated the 799 

GLM-derived activation maps across all experimental conditions by computing the maximum of 800 

the absolute activation values for each voxel in FSL (Jenkinson et al., 2012) 801 

(http://fsl.fmrib.ox.ac.uk/fsl) and then averaged over all voxels within each ROI.  802 

We next evaluated how well the detected PC1 time series reflected stimulus-evoked 803 

activity temporally for each ROI separately. Specifically, for each experimental condition 𝑖𝑖, we 804 

modelled a canonical response (𝑐𝑐𝑖𝑖�) by convolving the timing of the relevant events with the 805 

canonical HRF as implemented by the “spm_hrf.m” function of the Statistical Parametric Mapping 806 

(SPM) software (Penny et al., 2011) with default settings in Matlab R2019a. For each ROI, we 807 

then combined these canonical responses across all experimental conditions with the GLM-808 

derived activations of the given ROI in these conditions as weights: 809 

𝑦𝑦𝑗𝑗(𝑡𝑡)  = ∑ 𝑧𝑧𝑖𝑖
𝑗𝑗 ⋅ 𝑐𝑐𝚤𝚤�(𝑡𝑡)𝑖𝑖                                                                (6) 810 

where 𝑦𝑦𝑗𝑗(𝑡𝑡) denotes the combined model of ROI 𝑗𝑗 at time point 𝑡𝑡 and 𝑧𝑧𝑖𝑖
𝑗𝑗 denotes the GLM-811 

derived activation of ROI 𝑗𝑗 in task condition 𝑖𝑖. Correspondence between the detected PC1 time 812 

series and the combined model 𝑦𝑦𝑗𝑗 was measured by Pearson’s correlation for each ROI 813 

https://neurovault.org/
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4.5 Stability analysis of shared responses 814 

The stability of the TOPF-derived shared response time series across different subsamples was 815 

evaluated on the NV fMRI data in dataset2. For each movie clip, we varied the sample size 816 

(number of subjects, 𝑛𝑛) of the input fMRI data matrix from 10 to 90 with a step size of 20 and 817 

created 100 different subsamples for each sample size. Only unrelated subjects were included in 818 

the same subsample to avoid possible bias from the family structure of the dataset. The stability 819 

was first evaluated for each ROI separately at each value of 𝑛𝑛 by computing the mean Pearson's 820 

correlation coefficient of the derived PC1 time series across all pairs of subsamples. Given that 821 

the derived PC1s may be sign-flipped for some subsamples, we used the absolute correlation 822 

value to reflect the similarity of any two PC time series. The stability was then averaged over all 823 

ROIs to reflect the overall stability across the whole brain. 824 

4.6 Evaluation of individual differences captured by individual-specific topographies 825 

The ability of TOPF to capture individual differences was assessed by the between-subject 826 

similarity of individual-specific topographies (i.e., PC1 loadings across ROIs). The topography 827 

was derived by TOPF for each subject on each subsample (as described previously) of the NV 828 

fMRI data at 𝑛𝑛 = 90. The between-subject similarity in these topographies was computed by 829 

using Pearson's correlation for each pair of subjects within each subsample for each movie clip 830 

separately. Intersubject variability in brain activity was also quantified for each ROI separately as 831 

the standard deviation of its PC1 weights. Note that here we used PC1 weights for a fair 832 

comparison across different ROIs instead of PC1 loadings. Likewise, the within-subject similarity 833 

was computed by Pearson's correlation coefficient of the topographies between each pair of 834 

movie clips for each subject within each subsample separately. The cross-movie stability of the 835 

pattern of the PC1 loadings across all subjects was computed by using Spearman’s correlation 836 

for each ROI and each pair of movie clips on each subsample separately. 837 

4.7 TOPF: Phenotype prediction 838 

The second step of TOPF is to investigate the behavioural relevance of the identified individual-839 

specific topographies under a machine learning-based predictive framework. fMRI data from 840 
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three NV paradigms and three tasks in dataset2 were used to predict eight different phenotypes 841 

separately to evaluate the predictive framework. In this study, we used a ridge linear regression 842 

model for the prediction. We chose this particular model because it is simple and has been shown 843 

to achieve robust performance in various neuroimaging studies (Cui & Gong, 2018; Tian & 844 

Zalesky, 2021). We note that other prediction models could also be used within TOPF in general.  845 

Prediction models were trained in a 10-fold cross-validation (CV) scheme. Specifically, all 846 

subjects (𝑛𝑛 = 179) were randomly divided into 10 groups of roughly the same size. To account for 847 

the family structure of dataset2, subjects from the same family were ensured to be all included in 848 

either the training set or the test set for each fold. In each fold, one group was held out for testing, 849 

with subjects from the other groups being used for training. Each group was used for testing once 850 

and only once. In each fold, the training set was used to train a prediction model, where for each 851 

subject all IE values (PC1 loadings) in the individual-specific topography were used as features, 852 

resulting in a 1 × 268 feature vector. Each feature was then z-score normalised. 853 

We note that to avoid information leakage from the test to the training set, test subjects 854 

were totally separated from training subjects during both the feature extraction and phenotype 855 

prediction phases. Instead of adding test subjects to the training sample and redoing PCA, the 856 

computation of features of test subjects was separate from that of training subjects. Specifically, 857 

for each test subject, each feature was computed as the Pearson's correlation coefficient 858 

between that subject’s fMRI time series and the PC1 time series which was previously derived on 859 

the training set of a given ROI. We note that in PCA, a PC loading of a variable (i.e., a training 860 

subject in our case) is mathematically equivalent to the Pearson's correlation coefficient between 861 

this original variable and the new variable (i.e., the PC) (Kanti et al., 1979). Therefore, the 862 

features of both training and test subjects are computed by comparing to the same group-level 863 

templates (i.e., the PCs learned on the training sample), thus ensuring their comparability. For 864 

each training set, the optimal regularisation parameter 𝜆𝜆 of ridge regression was determined by 865 

an inner 5-fold CV from 12 values [2−5, 2−4, . . . , 26]. The whole pipeline was implemented in 866 

Python using the scikit-learn and julearn packages 867 
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(https://juaml.github.io/julearn/main/index.html). For each fMRI paradigm-phenotype combination, 868 

the above procedure was repeated 10 times with different groupings of subjects.  869 

For each computation, prediction performance was measured by the Pearson's 870 

correlation coefficient between the predicted and the observed phenotypic scores across all 871 

subjects and all 10 folds. To control for the influence of head motion (measured by the RMS-FD 872 

values), age and sex, we regressed out these confounds from both the observed and predicted 873 

scores and computed the correlation of the two residuals. The correlation was then averaged 874 

over the 10 repetitions. Permutation tests with 5000 iterations were used to assess whether the 875 

obtained result was significantly higher than the chance level (Dinga et al., 2020). For each 876 

iteration, features were randomly shuffled across subjects with the original orders of the 877 

confounds and observed scores being kept. A correlation coefficient between predicted and 878 

observed scores was computed on the permuted data for each iteration and collected across all 879 

iterations to construct the null distribution. A p-value was then obtained by computing the 880 

proportion of iterations for which the true correlation was higher than that on the non-permuted 881 

data. The prediction performance of TOPF was further evaluated (i) without confound removal 882 

and (ii) using leave-one-out CV. Additionally, to rule out the impact of scan length, we further 883 

evaluated the prediction performance of TOPF after truncating all fMRI data to the same length. 884 

All NV fMRI data were truncated to the length of the shortest movie (Movie3), roughly 3 mins (179 885 

TRs), by removing the last few TRs of each data. Similarly, all task fMRI data were also truncated 886 

to the length of 3 mins (250 TRs). Prediction performance was recalculated on the truncated data 887 

using the same procedure as described above. 888 

4.8 Comparisons with FC-based prediction approaches  889 

Three commonly used FC-based prediction approaches, including the whole-brain connectome-890 

based prediction (WConn), nodal connectivity strength-based prediction (NConn), and 891 

connectome-based predictive modelling (CPM) (Shen et al., 2017), were compared with TOPF to 892 

further evaluate the utility of TOPF for phenotype prediction. Apart from the six fMRI paradigms 893 

(three NV paradigms and three tasks), we further included RS fMRI data of all the subjects in 894 

dataset2 (as described above). For each subject and each fMRI paradigm, we computed the FC 895 

https://juaml.github.io/julearn/main/index.html
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as the Pearson's correlation coefficient of the fMRI time series for each pair of ROIs separately, 896 

resulting in a total of eight 268 × 268 connectivity matrices for each subject. Each correlation 897 

coefficient was then Fisher z-transformed. For WConn, we extracted the upper triangle of the 898 

connectivity matrix without the diagonal as features, yielding a total of 35778 features 899 

(connections) for each subject and each fMRI paradigm. For NConn, we computed the node 900 

strength for each ROI separately, which is defined as the sum of the absolute values of the 901 

connectivities between the given ROI and all the other ROIs, resulting in a total of 268 features 902 

(ROIs) for each subject and each fMRI paradigm. The WConn and NConn features were then 903 

used to predict fluid intelligence, working memory, openness and emotion recognition on each 904 

fMRI paradigm separately by repeating the same prediction pipeline as used in TOPF. CPM uses 905 

a linear regression model and applies an additional feature selection step in each fold, where only 906 

the features (i.e., connections) that are correlated with the phenotype to be predicted are 907 

preserved. The selected features are then grouped into two groups according to whether they are 908 

positively and negatively correlated with the phenotype and the sum over all features within each 909 

group is then used as a feature for further steps (Shen et al., 2017). We used a correlation 910 

threshold of |r| = 0.2 for feature selection as used in a previous study (Finn & Bandettini, 2021). 911 

Code for implementing CPM was also adapted from that study (Finn & Bandettini, 2021). 912 

Prediction performance of CPM was also evaluated via 10 repetitions of a 10-fold CV. 913 

Comparisons between methods were conducted by using corrected resampled paired t-tests over 914 

scores of all CV folds and repetitions (Nadeau & Bengio, 2003).  915 

4.9 Identification of phenotype-related brain regions 916 

Permutation feature importance (Breiman, 2001) was computed for each ROI in each fMRI 917 

paradigm-phenotype combination with significant predictions separately. Specifically, for each 918 

successful combination, we collected the models fitted on the training sets across all CV folds 919 

and all repetitions, resulting in a total of 100 models. For each ROI and each model, we randomly 920 

shuffled the observations of the given ROI in the test set and recomputed the prediction 921 

performance. After repeating the procedure 100 times, the importance of each ROI in the given 922 

model was then quantified as the decrease in prediction performance (i.e., the difference between 923 
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the true performance and the performance derived on the permuted test set), averaged across 924 

the 100 iterations. This analysis was implemented in Python using the “permutation_importance” 925 

function in the scikit-learn package. Finally, for each successful fMRI paradigm-phenotype 926 

combination, a right-tailed, one-sample permutation test (Manly, 2007) with 5000 iterations was 927 

used to identify the ROIs for which the importance values over all the models were significantly 928 

larger than zero (corrected 𝑝𝑝 < 0.05). The correction for multiple comparisons was performed 929 

against a null distribution of the maximum value across all ROIs in each iteration (Nichols & 930 

Holmes, 2002). We note that in this study we used the permutation feature importance instead of 931 

the feature weights (i.e., regression coefficients) to identify the predictive features because the 932 

latter are known to have certain limitations in their interpretability (Haufe et al., 2014; Tian & 933 

Zalesky, 2021). The similarity of the spatial patterns of the identified predictive ROIs between 934 

fMRI paradigms was computed by the Jaccard similarity index for each pair of fMRI paradigms 935 

with significant predictions for each phenotype separately.  936 

4.10 Selection of PCs for TOPF 937 

The statistical significance of each PC time series derived by TOPF was evaluated by using a 938 

conservative permutation test (Di & Biswal, 2022). This analysis determined whether the amount 939 

of variance explained by each PC time series exceeded chance level. Specifically, for each ROI, 940 

we permuted the input fMRI data matrix 𝑋𝑋 by applying circular shifting. The fMRI time series of 941 

each subject was shifted with a random time interval so that the fMRI time series across subjects 942 

were mismatched in time while the autocorrelation structure of each fMRI time series was 943 

preserved (Kauppi et al., 2010). Next, a PCA was applied to the permuted data matrix and the 944 

procedure was repeated 10000 times. A null distribution was then constructed by collecting the 945 

variance explained by PC1 from the 10000 iterations. The p-value of each PC of the given ROI 946 

was determined as the proportion of iterations on which the explained variance was larger than 947 

the true variance explained by the PC. 948 

In addition to using PC1 loadings, prediction performance of TOPF was further evaluated 949 

by using PC2 loadings (268 features) and the combination of PC1 and PC2 loadings (268*2 950 

features; PC1+2) as features, together with five different thresholds of explained variance (0%, 951 
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3%,5%,7%,10%), resulting in a total of 15 different settings. In each CV fold, only the features for 952 

which the corresponding PC time series explained a larger amount of variance than the threshold 953 

were used in further steps for phenotype prediction. All the other procedures were the same as 954 

described in Section 4.7.  955 
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