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1 Introduction

The efforts in search of new physics have reached a milestone with the observation of
the Higgs boson at CERN’s Large Hadron Collider [1, 2], one of the most important
building blocks of the Standard Model of particle physics (SM). Until now, there is no
evidence for new particles other than the ones contained in the SM, at least up to an energy
scale of the order 1TeV. However, physics beyond the Standard Model (BSM) can arise
from heavy particles with masses above some unknown high-energy scale Λ exceeding the
TeV range, which is out of experimental reach for the foreseeable future. It is commonly
agreed on that — if such heavy degrees of freedom exist — the SM provides merely an
effective description of the underlying beyond-Standard-Model theory. A convenient way to
approach the effects of the latter below the scale Λ concerns the construction of effective
field theories, providing a fundamental, model-independent framework. According to the
Appelquist-Carazzone theorem [3] heavy particles decouple in a perturbative manner with
(anomaly-free) interactions in the low-energy range. Hence the underlying BSM theory can
be described by the Standard Model effective field theory (SMEFT), whose perturbative
expansion in powers of the small parameter 1/Λ yields

LSMEFT = LSM + 1
ΛL5 + 1

Λ2L6 + 1
Λ3L7 + . . . , with LD ≡

∑
i

CDi Q
D
i . (1.1)

In this operator-product-type of expansion the quantity LSM denotes the renormalizable
Lagrangian of the SM with mass dimension 4, the non-renormalizable Lagrangians LD
include operators QDi with mass dimensions D > 4 that are suppressed by powers of 1/Λ,
and the CDi are the respective dimensionless coupling constants known as Wilson coefficients.

In general LSMEFT is richer than LSM itself, as the LD are only restricted by Lorentz
invariance, the same SU(3)C × SU(2)L ×U(1)Y gauge group, and the same particle content
as the SM. In the recent past, much effort has been devoted to the systematic construction
of complete sets of operators contributing to the LD, which includes the classification and
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counting of all possible QDi (cf. ref. [4] for a short overview) as well as eliminating redundant
operators with the aid of equations of motion, partial integration, and Fierz identities. The
complete operator bases up to and including dimension 9 in SMEFT have been counted
and/or computed in refs. [4–13]. If we exclude the existence of, yet unobserved, hypothetical
light degrees of freedom that couple extremely weakly to the SM particle content, such as
axions and sterile neutrinos, SMEFT reduces to the SM in the limit of small energies. An
extension of SMEFT including new light particles can for instance be found in refs. [14–20].

However, when going to even smaller energies, SMEFT may not be the most convenient
theory to describe phenomena exclusively occurring below the electroweak scale ΛEW . v,
with v denoting the Higgs vacuum expectation value (vev). In this scenario, particles of the
SM with masses larger than ΛEW are no observable degrees of freedom anymore and the
gauge group reduces to SU(3)C ×U(1)em. This means that the top quark, the weak gauge
bosons W± and Z0, and the Higgs are integrated out and we are left with the dynamics of
QCD and QED only, while effects of weak interactions are implicitly encoded in the constant
Wilson coefficients, also giving rise to point-like interactions with neutrinos. Nevertheless,
the construction of a consistent and complete basis of such a theory, without operator
redundancies and terms of repeated flavors compositions, and its matching to SMEFT at
larger energies is quite involved [21]. The appropriate theory to handle effects in this energy
regime is known as low-energy effective field theory (LEFT), which is in principle a valid
theory on its own, even without recourse to SMEFT. The continuation of LEFT to energies
above ΛEW may for instance as well be given by the Higgs effective field theory [22–29],
which, in comparison to SMEFT, does not rely on the conjecture that the Higgs belongs to
an electroweak doublet.1 In either way, the operator product expansion of LEFT proceeds
in analogy to eq. (1.1) with a small expansion parameter that can be chosen as 1/v. With
its own Wilson coefficients C̃di and operators Q̃di of dimension d, the LEFT Lagrangian can
be written as

LLEFT = vL̃3 +Lν kin +LQCD+QED + 1
v
L̃5 + 1

v2 L̃6 + . . . , with L̃d ≡
∑
i

C̃di Q̃
d
i , (1.2)

where the three-dimensional Lagrangian L̃3 refers to a mass term of a possible Majorana
neutrino and the four-dimensional Lνkin includes the kinetic term for neutrinos. All other
dependencies on the Higgs vev are hidden in the respective Wilson coefficients and do not
contribute to the dimensional analysis, so that the different power counting schemes in
SMEFT and in LEFT have to be clearly distinguished. However, assuming SMEFT to be
the underlying theory of LEFT, we can account for the additional suppression in 1/Λ by
redefining the Wilson coefficients of LEFT as [31]

C̃di →
(
v

Λ

)∑
j
(Dj−4)

C̃di , (1.3)

where the Dj denote the dimension of SMEFT operators that can be combined in one
Feynman diagram to construct the desired LEFT operator.

1See ref. [30] for a comprehensive review.
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Hitherto, the investigation of the complete basis in LEFT extends up to dimension
9 [21, 31–35], and the inclusion of axions or sterile neutrinos in LEFT can be found in
refs. [19, 36–38]. A famous and maybe historically most important example of a LEFT
operator is the Fermi theory of weak interactions [39, 40].

Our analysis aims at a rigorous derivation of C- and CP -violating sources in the
mesonic sector arising from fundamental quark operators in LEFT.2 These, due to the CPT
theorem, T -odd and P -even (ToPe) contributions are of particular interest for cosmology,
as they provide, according to the Sakharov conditions [43], one prerequisite (in addition
to the T -odd, P -odd contributions) for the dynamical creation of the matter-antimatter
asymmetry during the baryogenesis. On the other hand, theoretical work about this class
of symmetry violation is severely lacking in contrast to the one for C-even and P -odd
phenomena. First thoughts on the structure of these BSM operators, independent of which
effective theory they could possibly belong to, were already made in the 1990s [44] and
extended throughout that decade [45–48]. It was claimed that the first C- and CP -odd
operators at low energies appear at dimension 7 and read3

ψ̄D~

~

µγ5ψχ̄γ
µγ5χ ,

ψ̄σµνλ
aψFµλGaνλ ,

ψ̄σµνψF
µλZνλ ,

(1.4)

for up to two fermion fields ψ and χ. An aspect withheld in these analyses is that the listed
operators are chirality-violating and thus need to be equipped with an additional Higgs
field. Therefore, according to a naive power counting, all these operators are of dimension 8
in SMEFT and of dimension 7 in LEFT. As the Higgs is integrated out in the latter theory,
its vev, which is absorbed in the Wilson coefficients, does not contribute to the dimensional
power. However, this leads to another unpleasant inconsistency: the heavy Z0-boson is not
integrated out although we are exclusively dealing with interactions at low energies. We have
not yet specified chirality-conserving C- and CP -odd operators of dimension 8 in LEFT.
These are a priori not suppressed with respect to the chirality-violating ones at dimension 7
in LEFT, as both can originate from operators of dimension 8 in SMEFT and thus have
the same suppression in 1/Λ. In a similar way this point was observed in nucleon EDM
analyses [49–51], which found that T - and P -odd chirality-violating operators of dimension
5 in LEFT can effectively be of the same order of magnitude as chirality-conserving ones
at dimension 6 in LEFT. Furthermore, at the time the operators in eq. (1.4) had been
proposed, the rigorously derived complete operator basis in LEFT was not available.

Going down to even smaller energies, cf. figure 1, some effort has been devoted to
constructing chiral effective theories from underlying quark-level operators in SMEFT or
LEFT, to access BSM phenomena including mesonic interactions below the hadronic scale of
Λχ ≈ 1.2GeV. Most of these works rely (implicitly) on the spurion analysis introduced in the

2An alternative path for the C- and CP -violating sources could be realized in SMEFT at the W -scale, cf.
refs. [41, 42], and should yield a set of operators that is equivalent to the one considered and presented in
this work.

3There are different formulations of the four-fermion operator in the cited literature, which are consistent
with each other when using the Gordon identity.
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work of Gasser and Leutwyler [52, 53] and were for instance applied to neutrinoless double
beta decays [54–57], baryon- and lepton-number-violating interactions [58–63], neutron-
antineutron oscillation [64], CP violation in axion interactions [38], EDM analyses in the
chiral SU(2) case [49, 50, 65, 66], or in Lorentz- and CPT -violating extensions of the
SM [67–69]. However, probably due to the missing set of ToPe operators on the quark
level, a rigorous and complete derivation of C- and CP -violating mesonic operators is still
missing in the literature.

For the application of these ToPe operators, the η meson is of particular interest,
because it is an eigenstate of C. It allows us to investigate ToPe forces in the absence of
the weak interaction, and provides an ideal stage to probe C and CP violation outside the
nuclear arena (see the review [70] and references therein), which does not place rigorous
bounds to constrain ToPe forces [71]. Furthermore, the new efforts of the REDTOP [72–74]
and JEF [75–77] collaborations to search for rare η decays underline the timeliness of
model-independent C- and CP -violating operators in the η sector. This complements
renewed recent interest in the feasibility to probe P - and CP -violating operators in η and
η′ decays [78–80], despite strong constraints from electric dipole moments.

At this point we would like to emphasize the importance of the effective field the-
ory (EFT) approaches applied in this work. The breakdown of different energy scales in
the EFT spirit is essential to incorporate the appropriate suppression of ToPe forces in
terms of Λ, v, and Λχ. Furthermore, given the unknown underlying mechanism above the
scale Λ, the use of χPT in analogy to its usual application in the non-perturbative realm of
QCD is inevitable. We will confirm in the following that ToPe operators necessarily are of
higher dimension than, e.g., the lowest-dimensional T -odd and P -odd operators that can
generate EDMs; EFT naturalness arguments, both in SMEFT and LEFT, therefore suggest
the former to be further suppressed compared to the latter, and hence more difficult to
detect. The motivation to undertake the present study at this point is clearly experiment-
driven: the interpretation of new, improved limits on C- and CP -violating effects requires
a dedicated theory framework, which we here provide. Even if new measurements continue
to be essentially null tests, they can be viewed as tests of the SMEFT or LEFT picture of
BSM physics, which is especially important when compared to similar EFT approaches in
EDM analyses mentioned above.

In this work we thoroughly revisit the C- and CP -violating operators up to and including
dimension 8 in LEFT and provide the first complete set of these operators. Readers who are
primarily interested in light-meson applications and implications for experimental analyses
may proceed directly to section 5. With focus on the application to ToPe forces in η decays,
we restrict our analysis to flavor-conserving quark operators (with couplings to the gluon
and photon fields). Additionally we quote the corresponding semi-leptonic operators. A
generalization to flavor-changing processes can be carried out in complete analogy and is
left for future analyses, if the phenomenological interest in these operators is given. To
undertake this venture, we start with fundamental C- and CP -violating operators on the
quark level from LEFT in section 2, by first providing a concise overview of discrete space-
time symmetries in section 2.1 and summarizing the full list of ToPe operators in section 2.2,
whose derivation from known LEFT bases is sketched in appendix A. Subsequently, in
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BSM physics

Theory

p ≥ Λ

Scale

?

Gauge group

?

Particle content

SMEFT Λ > p ≥ ΛEW SU(3)C × SU(2)L × U(1)Y
Li, Qi, li, ui, di,

H,G,A,Z,W±

LEFT ΛEW > p ≥ Λχ SU(3)C × U(1)Q ψ, `, ν,G,A

χPT Λχ > p SU(3)R × SU(3)L × U(1)Q π,A, `, ν

Figure 1. Comparison of effective field theories at different energy scales p.

section 3, we match these quark operators to mesonic physics. For this endeavor we rely on
the well-established techniques from chiral perturbation theory (χPT) and introduce the
latter to the reader in section 3.1. We summarize the discrete symmetries of each building
block of χPT in section 3.2, and subsequently explain the matching procedure between
LEFT and χPT in section 3.3. Afterwards we illustrate the principles of matching in detail
at the hand of the original dimension-7 operators in LEFT and furthermore translate the
dimension-8 operators in sections 3.4 and 3.5, respectively. As a short intermediate summary
we provide an overview of the corresponding overall C- and CP -violating Lagrangian in
section 3.6. In section 4 the ToPe chiral theory is taken to the large-Nc limit, allowing
for a consistent description of the η′. Finally, we sketch the application of our formalism
to various flavor-conserving decays of η and η′ mesons in section 5 and close with a brief
summary in section 6.

2 Effective beyond Standard Model theories: fundamental C- and CP -
violating operators

In this section we shortly introduce the LEFT bases under consideration, as well as the
notation and conventions used for our analysis.

Below the electroweak scale, the important degrees of freedom in the SM are two
up-type and three down-type quarks, which we summarize by ψ ∈ {u, c, d, s, b}, three
charged leptons ` ∈ {e, µ, τ}, and the corresponding left-handed neutrinos νL ∈ {νeL, νµL, ντL}.
Except for the latter, these fermions are described by the QCD and QED Lagrangians by
means of4

LQED+QCD =− 1
4FµνF

µν − 1
4G

a
µνG

aµν +
∑
ψ

ψ̄
(
i /D −mψ

)
ψ +

∑
`

¯̀(i /D −m`

)
` , (2.1)

4One can in principle also include the QCD θ-term.
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with photonic and gluonic field-strength tensors Fµν , Gaµν . We denote the representations
of these tensors in dual space by X̃µν = 1

2εµναβX
αβ with Xµν ∈ {Fµν , Gaµν}. The gauge

covariant derivative acting on quarks is chosen to be

Dµψ =
(~∂µ + ieQAµ + igT aGaµ

)
ψ ,

Dµψ̄ = ψ̄
(
∂

~

µ − ieQAµ − igT aGaµ
)
,

(2.2)

with Dµψ̄ ≡ (Dµψ)†γ0. In this equation Q and T a = 1
2λ

a are the generators of U(1)em and
SU(3)C , respectively, where λa denote the Gell-Mann matrices obeying the relations

[Ta, Tb] = ifabcTc , {Ta, Tb} = 1
3δab + dabcTc . (2.3)

The quantities fabc and dabc denote the totally antisymmetric and symmetric structure
constants of SU(3). The gauge covariant derivative acting on ` is defined analogously,
but without a coupling to gluons. We will henceforth indicate the direction to which the
derivative acts by arrows, i.e., ψ̄ ~Dµψ = ψ̄(Dµψ) and ψ̄D

~

µψ = (Dµψ̄)ψ. It proves useful to
introduce a hermitian version of the gauge covariant derivative by

ψ̄iD~

~

µψ ≡ ψ̄i ~Dµψ − ψ̄iD

~

µψ . (2.4)

The remaining Lagrangian terms in the LEFT Lagrangian from eq. (1.2) are built from the
same degrees of freedom contained in eq. (2.1) obeying the gauge group SU(3)c ×U(1)em.
The choice of LEFT basis is not unique, we can for instance employ the Gordon identity,
equations of motion, Fierz identities, as well as integration by parts to shift operators
between the classes. In this work we consider the LEFT basis derived in ref. [31] for
operators with mass dimension d ≤ 6 (5963 hermitian operators), ref. [35] for operators
of dimension 7 (5218 hermitian operators), and ref. [21] for the ones at d = 8 (35058
hermitian operators).

To tackle the overwhelming amount of more than 45 · 103 operators up to dimension
8 in LEFT, we restrict our investigation to operators that may possibly contribute ToPe
forces in η decays. Therefore we ignore operators including neutrinos,5 drop all operators
that violate lepton- and/or baryon-number conservation, and restrict the analysis to C-
and CP -odd operators only that are at the same time flavor-conserving.6 Still, we allow for
chirality-conserving and -violating operators.

2.1 Discrete space-time symmetries

In this section we shortly summarize the discrete symmetries of several quantities that
constitute the respective LEFT operators, to pick the correct C- and CP -violating operators
from the LEFT bases.

5The η decay listed as Γ20 in ref. [81], η → π+e−ν̄e + c.c., is in fact a C- and T -allowed decay.
6We note that the requirement of C and CP violation places a very selective constraint, reducing the

amount of 45 · 103 operators tremendously.
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For any combination of Dirac matrices Γ, the well-known transformations of fermion
bilinears under C, P , and T read

C : ψ̄Γχ C−−→ − χ̄γ0γ2ΓTγ2γ0ψ ,

P : ψ̄Γχ P−−→ ψ̄γ0Γγ0χ ,

T : ψ̄Γχ T−−→ ψ̄γ1γ3Γ∗γ3γ1χ ,

(2.5)

where ΓT denotes the transposed of Γ, Γ∗ is its complex conjugate, and the factor −1 in the
first line arises from the anticommutation of fermion creation and annihilation operators.
As the fermions in each bilinear change places under C, it may not be evident at first glance
that the original covariant derivative ~Dµ contributes to both eigenstates of C, in contrast
to D~

~

µ.7
The discrete symmetries of the gauge fields can be deduced from the requirement

that their interaction with the quark currents implied by eq. (2.1) preserves C, P , and T
separately. The hermitian generators Ta of SU(3) transform as Ta → T Ta = T ∗a under C and
T . Hence the discrete symmetries of all color structures can be derived with [82]

Ta
C−−→ xaTa , Ta

P−−→ Ta , Ta
T−−→ xaTa ,

Gµa
C−−→ −xaGµa , Gµa

P−−→ εµGµa , Gµa
T−−→ xaε

µGµa ,

Gµνa
C−−→ −xaGµνa , Gµνa

P−−→ εµενGµνa , Gµνa
T−−→ −xaεµενGµνa ,

(2.6)

where we used xa = 1 for a ∈ {1, 3, 4, 6, 8} and xa = −1 for a ∈ {2, 5, 7} to keep the notation
short. The sign εµ equals 1 for µ = 0 and −1 for µ ∈ {1, 2, 3}. To compile the discrete
symmetries of operators including SU(3) structure constants note that the non-vanishing
values of fabc (dabc) contain an odd (even) number of indices picked from {2, 5, 7}. Let us
illustrate this at a simple example: consider the C-transformation of the Weinberg-type
term fabcG

aν
µ G

bρ
ν G

cµ
ρ , which according to eq. (2.6) has the eigenvalue (−1)3xaxbxc. Due to

the color contraction with fabc, either one or all signs xa,b,c must be negative, such that
the operator is C-even. In complete analogy, one can compute the discrete symmetries of
arbitrary color contractions.

We summarize the C, P , and T transformations of various quark bilinears, gauge
fields, and color structures in table 1, which comes in handy when searching for C- and
CP -violating operators in LEFT.

2.2 C- and CP -odd operators in LEFT

In this section we list our most convenient choice of linearly independent ToPe operators up
to and including mass dimension 8 in LEFT, based on the operator bases in refs. [21, 31, 35].
Details on the derivation of the full set of C- and CP -violating operators can be found in
appendix A, which also takes care of operators that are not hermitian in the first place.

At this point we shortly summarize the straightforward but, given the vast number
of operators, quite tedious procedure. First, multiply each LEFT operator by a complex

7For the standard derivative ~D one needs the decomposition ψ̄ ~Dµψ = 1
2 ψ̄
[
(D

~

µ + ~Dµ)− (D

~

µ − ~Dµ)
]
ψ

to obtain (two distinct) C eigenstates.

– 7 –



J
H
E
P
0
6
(
2
0
2
3
)
1
5
4

ψ̄ψ ψ̄iγ5ψ ψ̄γµψ ψ̄γµγ5ψ ψ̄σµνψ ψ̄iσµνγ5ψ Xµ Xµν fabcG
aν
µ G

bρ
ν G

cµ
ρ fabcT

aGbµνG
cµν fabcT

aT bGcµν

C + + − + − − − − + − +

P + − εµ −εµ εµεν −εµεν εµ εµεν + + εµεν

T + − εµ εµ −εµεν εµεν εµ −εµεν + − εµεν

Table 1. Discrete space-time symmetries of quark bilinears with a single flavor and several gauge
terms. In this simplified notation each SU(3) color generator Ta is thought to be part of one
quark bilinear. We furthermore introduce Xµ ∈ {Aµ, TaGaµ} and Xµν ∈ {Fµν , TaGaµν}. Replacing
any field-strength tensor by its representation in dual space X̃µν , i.e., any contraction with the
Levi-Civita symbol εαβµν , flips the signs of P and T . An exchange of the structure constants fabc
and dabc changes signs of C and T . When multiplying each term with the imaginary unit i the sign
of T flips, while the inclusion of D~

~

µ in a bilinear flips the signs of C and T . If necessary, factors of i
are multiplied to render quark bilinears hermitian.

Wilson coefficient and add the hermitian conjugate. All LEFT bases under consideration are
formulated in terms of left- and right-handed fermions, such that the resulting multilinears
do not necessarily have definite eigenvalues under C, P , and T . To remedy this issue we
decompose the chiral fields into their (pseudo)scalar, (axial)vector, and (pseudo)tensor
contributions and compile their eigenvalues with the aid of table 1 and similar relations for
different color structures. Finally we have to identify chirality-conserving and -violating
operators. If both appear at the same mass dimension of LEFT, we can ignore the latter,
which is in some more detail discussed in section 2.2.2.

While the identification of chirality-violating fermion bilinears is straightforward, special
care has to be taken for quadrilinear quark operators. Some four-quark operators that are
naively found to be chirality-breaking may be mediated by gauge-invariant BSM couplings of
left-handedW± bosons to right-handed currents, induced via mixing of the W± bosons with
their right-handed BSM counterparts. For instance, the dimension-6 P - and T -violating
quadrilinear quark operator of Ng and Tulin [83]

i
CNT
Λ2

{
(ūRγµdR)(d̄LγµuL)− (d̄RγµuR)(ūLγµdL)

}
(2.7)

(with Wilson coefficient CNT) can be traced back to the following gauge-invariant, manifestly
chirally symmetric dimension-6 operator (resulting, e.g., in the reduction of minimal left-
right-symmetric models [84, 85]—a subclass of left-right models [86, 87])

CLR
Λ2 (iH̃†DµH)(ūRγµdR) + h.c. . (2.8)

Here H with H̃ ≡ iτ2H∗ is the Higgs doublet field, Dµ = ∂µ + igW aτa, a = 1, 2, and CLR
the pertinent Wilson coefficient. This term yields, after electroweak symmetry breaking, in
unitary gauge

− gv2

2
√

2

[
CLR
Λ2 ūRγ

µdRW
†
µ + h.c.

](
1 + h

v

)2
, (2.9)

with h the lightest Higgs boson of the model, which corresponds to the physical Higgs
boson, and v its vacuum expectation value. After integrating out the Higgs and W± bosons,
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we obtain, just below the W± mass, the four-quark operator (2.7) to leading order. Note
that the Higgs vev v cancels against the mass of the W± bosons, as the coupling to the
right-handed current involved the Higgs kinetic term and is therefore not of Yukawa nature.
More details can be found in refs. [88, 89], see also ref. [90].

In accordance with this argument, the chirality-conserving operators can also be easily
identified by the fact that they must appear at the same order in both LEFT and SMEFT,
if a consistent operator basis is used.

To shorten the notation in the following subsections, we omit the ratio of scales v4/Λ4,
which according to eq. (1.3) is common to all our operators. Regarding eq. (1.2), the
suppression in terms of these heavy scales can explicitly be restored by multiplying each
LEFT operator of dimension 7 by v/Λ4 and the ones of dimension 8 by 1/Λ4.

2.2.1 Dimension-7 operators

We show in appendix A that there are indeed no ToPe operators below dimension 7 in
LEFT as already implicitly claimed decades ago [44], but which was — to the best of our
knowledge — not proven explicitly in the literature.8 At dimension 7 we can confirm that
exactly the operators already quoted in eq. (1.4) contribute (except the one including the
Z-boson, which obviously does not belong to LEFT), i.e.,

O(a)
ψχ ≡ c

(a)
ψχ ψ̄D

~

~

µγ5ψχ̄γ
µγ5χ ,

O(b)
ψ ≡ c

(b)
ψ ψ̄T aσµνψFµρG

aρ
ν ,

(2.10)

where c(a)
ψχ and c(b)

ψ denote real-valued Wilson coefficients with flavor indices ψ, χ combined
with superscripts (a), (b) serving as labels to classify operators unambiguously. The quadri-
linear in this equation can in principle appear with two different color contractions.9 In
addition, we find the (semi-leptonic) operators containing quarks and charged leptons

O(c)
`ψ ≡ c

(c)
`ψ

¯̀D~

~

µγ5`ψ̄γ
µγ5ψ ,

O(d)
`ψ ≡ c

(d)
`ψ

¯̀γµγ5`ψ̄D~

~

µγ5ψ .
(2.11)

2.2.2 Dimension-8 operators

As all terms in section 2.2.1 are chirality-breaking, we can a priori not neglect chirality-
conserving operators at dimension 8 in LEFT. Investigating the latter, we do not find any
ToPe operators for pure gauge terms or terms including four fermions and two derivatives.

8To consistently construct a C- and CP -odd operator from lower-dimensional ones, one could for instance
include a T - and P -odd operator of dimension 6 of SMEFT in a C-violating electroweak loop. However,
integrating out the weak gauge boson with mass dimension 1, i.e., replacing it by the quark current of
dimension 3, effectively leads to a dimension-8 operator in LEFT. Due to the completeness of the LEFT
operator bases used in this work, these contributions are automatically taken care of.

9We note that according to refs. [51, 90], the four-quark operator in eq. (2.10) should be valid just
below the W± threshold. This means that one expects QCD corrections when running down to a scale µ,
1GeV � µ � MW±, such that the quadrilinear in eq. (2.10) would mix with its corresponding different
color contraction. These corrections are beyond the scope of our analysis and do not have any effect once
the LEFT basis is matched onto χPT.
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For quark multilinears coupling to gluon field-strength tensors (henceforth called gluonic
operators) we identify

O(e)
ψ ≡ c

(e)
ψ fabcψ̄γ

µiD~

~

νT aψGbµρG
c ρ
ν ,

O(f)
ψχ ≡ c

(f)
ψχ ψ̄γ

µψχ̄γνT aχGaµν ,

O(g)
ψχ ≡ c

(g)
ψχ ψ̄γ

µγ5ψχ̄γ
νγ5T

aχGaµν ,

O(h)
ψχ ≡ c

(h)
ψχ fabcψ̄γ

µγ5T
aψχ̄γνT bχG̃cµν ,

O(i)
ψχ ≡ c

(i)
ψχ dabcψ̄γ

µT aψχ̄γνT bχGcµν ,

O(j)
ψχ ≡ c

(j)
ψχ dabcψ̄γ

µγ5T
aψχ̄γνγ5T

bχGcµν ,

O(k)
ψχ ≡ c

(k)
ψχ i

[
ψ̄T aχχ̄σµνψ + ψ̄γ5T

aχχ̄σµνγ5ψ − (ψ ↔ χ)
]
Gaµν ,

O(l)
ψχ ≡ c

(l)
ψχ i

[
ψ̄χχ̄σµνT aψ + ψ̄γ5χχ̄σ

µνγ5T
aψ − (ψ ↔ χ)

]
Gaµν ,

O(m)
ψχ ≡ c

(m)
ψχ

[
ψ̄σλµT aχχ̄σµνψ + ψ̄σλµγ5T

aχχ̄σµνγ5ψ + (ψ ↔ χ)
]
Ga νλ ,

(2.12)

as C- and CP -odd. Among these operators, O(i)
ψχ,O

(j)
ψχ,O

(k)
ψχ ,O

(l)
ψχ are antisymmetric under

flavor interchange, while O(m)
ψχ is symmetric.

Similar to the operators in eq. (2.12) we find quark quadrilinears including photon
field-strength tensors (photonic operators), i.e.,

O(n)
ψχ ≡ c

(n)
ψχ ψ̄γ

µψχ̄γνχFµν ,

O(o)
ψχ ≡ c

(o)
ψχ ψ̄γ

µγ5ψχ̄γ
νγ5χFµν ,

O(p)
ψχ ≡ c

(p)
ψχ ψ̄γ

µT aψχ̄γνT aχFµν ,

O(q)
ψχ ≡ c

(q)
ψχ ψ̄γ

µγ5T
aψχ̄γνγ5T

aχFµν ,

O(r)
ψχ ≡ c

(r)
ψχ i

[
ψ̄χχ̄σµνψ + ψ̄γ5χχ̄σ

µνγ5ψ − (ψ ↔ χ)
]
Fµν ,

(2.13)

which, due to fewer possible color contractions, allow for fewer C- and CP -violating con-
tributions than the gluonic operators. Each of these photonic operators is completely
antisymmetric under interchange of quark flavors, up to the unknown Wilson coefficients.
Therefore the operators O(z)

χψ, with z ∈ {n, o, p, q, r}, can in principle always be absorbed by
O(z)
ψχ with an appropriate redefinition of the Wilson coefficients, leaving us with three inde-

pendent flavor combinations to consider for the off-diagonal contributions, e.g., O(z)
ud ,O

(z)
us ,

and O(z)
ds . Note that the diagonal elements O(z)

uu ,O(z)
dd , and O

(z)
ss vanish for all operators in

eq. (2.13).
There are only two ToPe operators in dimension 8 LEFT that contain quark bilinears,

photons, and gluon field-strength tensors (photo-gluonic operators), which explicitly read

O(s)
ψ ≡ c

(s)
ψ ψ̄γµiD~

~

νT aγ5ψFµρG̃
a ρ
ν ,

O(t)
ψ ≡ c

(t)
ψ ψ̄γµiD~

~

νT aγ5ψFνρG̃
a ρ
µ .

(2.14)
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Finally we quote our findings for semi-leptonic operators. The inclusion of leptonic
bilinears reduces the amount of possible color contractions and hence the number of
contributing ToPe operators enormously. Our results for gluonic operators at dimension 8
in LEFT read

O(u)
`ψ ≡ c

(u)
`ψ

¯̀γµ`ψ̄γνT aψGaµν ,

O(v)
`ψ ≡ c

(v)
`ψ

¯̀γµγ5`ψ̄γ
νγ5T

aψGaµν ,
(2.15)

while the ones for photonic terms are

O(w)
`ψ ≡ c

(w)
`ψ

¯̀γµ`ψ̄γνψFµν ,

O(x)
`ψ ≡ c

(x)
`ψ

¯̀γµγ5`ψ̄γ
νγ5ψFµν .

(2.16)

We list C- and CP -odd chirality-breaking quark quadrilinears in dimension 8 of LEFT,
which do not gain any further consideration, in appendix A.3.5. These can surely be neglected
because, other than all the operators listed above, they do not arise from dimension 8
in SMEFT and thus originate from higher-dimensional operators in the SMEFT power
counting, which implies a corresponding suppression due to additional inverse powers of the
BSM scale Λ.

3 Construction of effective C- and CP -violating chiral Lagrangians

In the following we summarize and extend the principles of matching between LEFT and
χPT operators to obtain a model-independent effective SU(3) theory for C and CP violation
in flavor-conserving light-meson interactions, originating from the complete list of C- and
CP -odd operators worked out in the previous chapter. We refer to this theory as T -odd,
P -even chiral perturbation theory (ToPeχPT). In particular, we work out the non-trivial
matching of quark multilinears with derivative character and couplings to gluons, which
is in this sense not included in the current literature, while introducing the formalism in
detail. Whenever possible, we restrict the matching to the leading order in the chiral power
counting and C and CP violation.

3.1 Chiral perturbation theory: notation and conventions

According to Gasser and Leutwyler [52, 53], the massless QCD Lagrangian L0
QCD can be

extended by introducing external sources to obtain the most general non-kinetic quark
operators, by means of

L = L0
QCD + q̄Lγ

µlµqL + q̄Rγ
µrµqR − q̄RsqL − q̄Ls†qR + q̄Lσ

µνtµνqR + q̄Rσ
µνt†µνqL , (3.1)

with the light-quark triplet q = (u, d, s)T , and external sources rµ = r†µ, lµ = l†µ, s, and tµν ,
which are three-dimensional quadratic matrices in flavor space. The tensor source tµν was
first introduced in ref. [91]. The spontaneous breakdown of the SU(3)L × SU(3)R ×U(1)V
global and continuous gauge group of this theory results in an SU(3)V ×U(1)V symmetry,
thus generating eight Goldstone bosons φa as the relevant degrees of freedom.
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The chiral theory (for reviews, see, e.g., refs. [92–94]), which exhibits a certain power
counting in terms of soft momenta and light quark masses, can then be described by the
unitary matrix U defined as

U = exp
(
iΦ
F0

)
, with Φ ≡ λaφa =


π0 + 1√

3η8
√

2π+ √
2K+

√
2π− −π0 + 1√

3η8
√

2K0
√

2K−
√

2K̄0 − 2√
3η8

 , (3.2)

where F0 . Fπ = 92.2MeV [81] is the pion decay constant in the chiral limit and η8 the
octet part of the η mesons. The matrix χ = 2B0s includes the scalar source and a low-energy
coefficient B0, and the field-strength tensors are given as

fµνR = ∂µrν − ∂νrµ − i[rµ, rν ] , fµνL = ∂µlν − ∂ν lµ − i[lµ, lν ] . (3.3)

The dynamics of the Goldstone bosons is driven by the gauge covariant derivative acting on
U and U † defined as10

DµU ≡ ∂µU − irµU + iUlµ , DµU
† ≡ ∂µU † + iU †rµ − ilµU † , (3.4)

which is necessary to ensure invariance under local extension of the global gauge transforma-
tions.11 In particular, note that the product rule applies to these derivatives [96], thereby —
together with the unitarity of U — inducing the important identity DµUU

† = −UDµU
†. To

keep the notation as simple as possible, we use the convention that the covariant derivative
only acts on the object immediately to its right, by means of DµUU

† ≡ (DµU)U † and
DµDνUU

† ≡ (DµDνU)U †. We remark that the covariant derivative may in principle also
act on any combination of chiral building blocks that transforms in the same manner as U
or U †, respectively, for instance on UfµνL or U †fµνR .

Our fundamental building blocks, ordered according to their power counting in soft
momenta, transform under SU(3)L × SU(3)R group actions as

O(p0) : U → RUL† , U † → LU †R† ,

O(p1) : DµU → RDµUL
† , DµU

† → LDµU
†R† ,

O(p2) : χ → RχL† , χ† → Lχ†R† ,

O(p2) : fµνR → RfµνR R† , fµνL → LfµνL L† ,

(3.5)

where L ∈ SU(3)L, R ∈ SU(3)R. Any mesonic operator in Standard Model χPT (SMχPT)
can be built by coupling these building blocks in all Lorentz covariant ways that respect the
conservation of discrete symmetries C, P , and T , and the invariance under SU(3)L×SU(3)R
group actions. The latter condition demands the inclusion of traces in flavor space, which
we indicate as

〈
. . .
〉
. The lowest-order SMχPT Lagrangian thus yields

L(2)
χ = F 2

0
4
〈
DµUD

µU †
〉

+ F 2
0

4
〈
χU † + χ†U

〉
. (3.6)

10Confusion with the LEFT covariant derivative, which includes gluons, should be avoided by the context
and the fact we only use the LEFT derivative ~Dµ in vector notation.

11A local chiral symmetry is required to ensure that proper chiral Ward identities hold, cf. ref. [95].
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To access mesonic interactions encoded in this Lagrangian, the matrix U can be expanded
in a simple Taylor series according to

U = 1 + i

F0
Φ− 1

2F 2
0

Φ2 − i

6F 3
0

Φ3 + . . . . (3.7)

Once the chiral Lagrangian has been built, the external sources can be fixed to their physical
values, i.e.,

s 7→Mq , rµ 7→ −eQAµ , lµ 7→ −eQAµ , tµν 7→ 0 , (3.8)

with the matrices Mq = diag(mu,md,ms) and Q = diag(2/3,−1/3,−1/3). Finally, we
quote the equation of motion to leading order [53, 92–94]

D2UU † − UD2U † − χU † + Uχ† + 1
3
〈
χU † − Uχ†〉 = 0 , (3.9)

with D2 = DµD
µ, which proves useful to remove redundancies.

3.2 Discrete space-time symmetries

Similar to section 2.1, we now discuss the transformation properties of the fundamental
chiral building blocks under discrete space-time symmetries, which can be derived from
those of the underlying quark currents and densities.

The discrete symmetries of the mesons matrix Φ and the external sources rµ and lµ are
similar to the ones of the hermitian pseudoscalar quark density iq̄γ5q and the quark currents
q̄RγµqR and q̄LγµqL, respectively. This leads, upon suppressing the explicit dependencies
on the space-time coordinates, to

Φ C←−→ ΦT , Φ P←−→ −Φ , Φ T←−→ −Φ ,

rµ
C←−→ −lTµ , rµ

P←−→ lµ , rµ
T←−→ rµ .

(3.10)

To proceed, consider that T is an anti-unitary operator, such that T : i −→ −i, and that the
derivative transforms as T : ∂µ −→ −∂µ. Hence we can conclude from the defining equations
of U and fµνL/R, as well as the fact that χ has to have the same discrete symmetries as U ,
the following transformation properties of our building blocks:12

U
C←−→ UT , U

P←−→ U † , U
T←−→ U ,

DµU
C←−→ DµU

T , DµU
P←−→ DµU † , DµU

T←−→ −DµU ,

χ
C←−→ χT , χ

P←−→ χ† , χ
T←−→ χ ,

fµνL/R
C←−→ −(fµνR/L)T , fµνL/R

P←−→ fR/Lµν , fµνL/R
T←−→ −fL/Rµν .

(3.11)

12Literature about the T -transformation of the chiral building blocks is scarce, cf. refs. [97, 98]. Unfor-
tunately, ref. [98] adapted the T transformation from ref. [97] erroneously, by choosing Φ T←−→ Φ, which
would imply that [according to eq. (3.7)] U is no eigenstate of T . Moreover, ref. [98] quotes the wrong time
reversal of rµ, lµ, and fµνL/R, which should transform under T like the physical photon and the photonic
field-strength tensor, respectively.
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Here and in the following we use the definitions DµU
T ≡ (DµU)T and DµU

∗ ≡ (DµU)∗,
respectively. Regarding products of chiral building blocks, these transformations apply to
each matrix separately, while the algebraic properties of the trace play a vital role. For
convenience we explicitly illustrate the transformation under discrete symmetries at the
simple example of L(2)

χ . Under charge conjugation the Lagrangian transforms as

L(2)
χ

C−−→ F 2
0

4
〈
DµU

TDµU∗
〉

+ F 2
0

4
〈
χTU∗ + χ∗UT

〉
= F 2

0
4
〈
DµU †DµU

〉
+ F 2

0
4
〈
U †χ+ Uχ†

〉
= F 2

0
4
〈
DµUD

µU †
〉

+ F 2
0

4
〈
χU † + χ†U

〉
,

(3.12)

and is thus invariant. In the first equality we used that traces are invariant under matrix
transposition, leading to the observation that for any operator consisting of the building
blocks from eq. (3.11) C merely reverses the order of the matrices (and flips sign and
handedness of fµνL/R), whereas in the second equality we applied the cyclic property of the
trace. Analogously, cyclicity renders L(2)

χ parity-invariant, while its T transformation is
trivial. At this point, note that the terms χU † and χ†U are summed without a relative
factor to ensure that we have an eigenstate of P . We will make ample use of this observation
in the following sections.

3.3 Matching LEFT and χPT: building the chiral basis
Having provided the fundamental building blocks as well as their transformation under
SU(3)L × SU(3)R group actions and discrete space-time symmetries C, P , and T , we may
now match the C- and CP -violating LEFT operators from section 2.2 onto χPT.

For this endeavour, we begin by regarding our LEFT operators as additional external
sources, cf. eq. (3.1). These sources can be written as general chiral irreducible representa-
tions, which for an arbitrary quark multilinear consisting of n bilinears takes the form

O = Ta1b1...anbn(q̄X1∆1Γ1λ̂
1
a1b1qY1) . . . (q̄Xn∆nΓnλ̂nanbnqYn) , (3.13)

with λ̂iaibi as 3× 3 matrices (not single matrix elements) projecting out the flavor ai, bi ∈
{u, d, s} of each quark bilinear, chiralities Xi, Yi ∈ {L,R}, any combination of Dirac
matrices Γi, arbitrary operators ∆i that leave the chiral structure invariant (these may
include derivatives acting on quark fields, leptonic terms, as well as photonic or gluonic field-
strength tensors), and a coefficient tensor T ≡ Ta1b1...anbn λ̂

1
a1b1

. . . λ̂nanbn , which depends on
the quark flavor and includes the Wilson coefficients of the respective LEFT operators. Upon
treating the coefficients T of the external sources as spurions with well-defined transformation
properties under SU(3)L × SU(3)R group actions, we can render the operators in eq. (3.13),
in which the quarks triplets transform as

qL → LqL , q̄L → q̄LL
† , qR → RqR , q̄R → q̄RR

† , (3.14)

chirally invariant.13 This procedure is completely analogous to the inclusion of quark masses
using the building block χ.

13The matrices L and R should not be mixed up with the chiral projection operators PL,R = (1± γ5)/2.
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The only terms in our LEFT operators, cf. eq. (3.13), that survive (at lowest order
in the QED coupling) the transition from energies above the chiral scale Λχ to the ones
below it, are photonic field-strength tensors and leptonic bilinears encoded in the ∆i and
the spurion T . All other quantites are either too heavy (already accounted for in LEFT,
like W - and Z-bosons) or no observable degrees of freedom due to color confinement, as
quarks — therefore also derivatives acting on them — and gluons. However, although the
latter do not appear as observable quantities in the effective theory, we still have to account
for the information on their discrete symmetries and Lorentz structure when constructing
the effective theory. For the explicit mapping of quark-level operators to the mesonic level
we proceed as follows.

• First, rewrite each LEFT operator in terms of chiral irreps, cf. eq. (3.13), and identify
the spurions and their transformation properties under chiral group actions and C, P ,
and T .

• Next, attach chiral building blocks to the spurions, respect the initial Lorentz structure
of quark-gluon terms (which, at leading order, only includes the contraction with the
metric tensor gµν , but at higher orders also with the Levi-Civita symbol εαβµν), and
contract flavor indices to form chirally invariant traces in all possible ways at the
lowest possible order in chiral power counting, cf. eq. (3.5). This also includes the
product of invariant flavor traces.

• Finally ensure hermiticity and the appropriate discrete symmetries by constraining
respective coupling constants (multiplied, if needed, by a factor of i) to be equal up
to a sign. These symmetries encode the remaining information from gluons, quark
bilinears, and their derivatives that were all in some sense integrated out.

• In order to establish operators at higher chiral orders, one may repeat the above
procedure with further insertions of Dµ, χ(†), and fµνR,L to build chiral invariants or
multiply other chirally invariant traces to the operators obtained at lower orders. In
either way, one has to ensure throughout that hermiticity and proper transformations
under the discrete symmetries are respected. In principle, higher-order operators can
also arise from products of the spurion T [55] or loops of lower-order operators. We
restrict the analysis to linear effects in the already strongly suppressed ToPe forces
and only work at tree level.

• Make sure to constantly get rid of redundancies by identifying independent and
non-vanishing operators.

We furthermore remark that there is no one-to-one correspondence between quark operators
with those at the mesonic level and that, as usual when building chiral theories to higher
orders, there is no way to know the number of possible operators a priori. One still has to
keep in mind that, after building the chiral bases as described above for each LEFT operator,
there still remains the question how these operators can be distinguished in experiment, if
this is possible at all.
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In the following we will denote the mesonic counterpart of any LEFT operator O(z)
ψχ

by X(z)
ψχ .

3.4 Matching dimension-7 LEFT operators

This section is devoted to providing a detailed discussion of the χPT Lagrangian arising
from the C- and CP -odd dimension-7 LEFT quark operators listed in eq. (2.10) and the
semi-leptonic ones from eq. (2.11).

3.4.1 The quark quadrilinear operator

First we investigate the operator

O(a)
ψχ = c

(a)
ψχ ψ̄D

~

~

µγ5ψχ̄γ
µγ5χ . (3.15)

In terms of chiral irreps, this operator can analytically be rewritten as

O(a)
ψχ = c

(a)
ψχ

[
(q̄LD~

~

µλ
†qR)(q̄RγµλRqR)− (q̄RD~

~

µλqL)(q̄RγµλRqR)

+ (q̄RD~

~

µλqL)(q̄LγµλLqL)− (q̄LD~

~

µλ
†qR)(q̄LγµλLqL)

]
,

(3.16)

where, compared to eq. (3.13), we use the abbreviations λ̂(†)
ψψ ≡ λ(†), λ̂χχL/R ≡ λL/R and

hence keep the dependence on the quark flavor implicit. For convenience we have chosen a
notation such that the spurions — which do in our case not contribute to the chiral power
counting — transform analogously to the building blocks from eq. (3.5), i.e.,

O(p0) : λ → RλL† , λ† → Lλ†R† ,

O(p0) : λR → RλRR
† , λL → LλLL

† ,
(3.17)

such that O(a)
ψχ is a chiral invariant. In fact, λ transforms analogously to U or χ, while λR

transforms, e.g., as Uλ† (or as λU †) and λL as λ†U (or as U †λ).
The discrete symmetries of the λ yield

λ
C←−→ λT , λ

P←−→ λ† , λ
T←−→ λ ,

λR
C←−→ λTL , λR

P←−→ λL , λR
T←−→ λR ,

λL
C←−→ λTR , λL

P←−→ λR , λL
T←−→ λL .

(3.18)

Once the chiral operator basis is established, each spurion can be set to its physical
value, i.e., the respective 3 × 3 matrix projecting out the correct flavor in each bilinear,
or more explicitly λ(†), λL/R ∈ {diag(1, 0, 0), diag(0, 1, 0), diag(0, 0, 1)}. This gives rise to
the conditions λ = λ†, λL = λR, and, for the case ψ = χ, λ = λL. Furthermore note that
λλL = λ2 = λ for ψ = χ and λλL = 0 for ψ 6= χ.

Assigning the chiral irreps to each of the four summands in eq. (3.16), we can symboli-
cally write

O(a)
ψχ = 3̄L ⊗ (15R ⊕ 3R)− 3L ⊗ (1̄5R ⊕ 3̄R) + (15L ⊕ 3L)⊗ 3̄R − (1̄5L ⊕ 3̄L)⊗ 3R . (3.19)
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At the mesonic level, these irreps come (a priori) with independent coupling constants,
called low-energy constants (LECs), which encode all information about the involved non-
perturbative QCD effects. The first summand in the equation above has, for instance, the
LEC g3̄L⊗(15R⊕3R) ≡ g3̄L⊗15R + g3̄L⊗3R . Each of these unknown LECs is common to all χPT
operators arising from the same irrep operator of eq. (3.19). However, chiral symmetry does
not fix the relative size of mesonic operators in each single irrep, thus generating additional
LECs that have to be determined by external input.

We may now move on to the χPT operator basis and consider only the dominant linear
effects in the spurions as higher orders in λ would imply an additional suppression by the
small expansion parameter of LEFT.14 Let us start with the lowest possible order p0, which
only allows for λ(†), λL/R, and U to occur in the traces. There are two possible ways of
arranging the λ: either λ(†) and λL/R are part of the same trace, or of two different traces.
We cannot multiply by any other traces, as there is no non-constant chirally invariant trace
solely consisting of U and U †.15

Due to the unitarity of U , the only invariant traces that can be built in the first of the
two cases are

g
(a)
(15L⊕3L)⊗3̄R

g
(a)
0
〈
λλLU

†〉 , g
(a)
3̄L⊗(15R⊕3R)ĝ

(a)
0
〈
λ†λRU

〉
,

g
(a)
(1̄5L⊕3̄L)⊗3R

g̃
(a)
0
〈
λLλ

†U
〉
, g

(a)
3L⊗(1̄5R⊕3̄R)ğ

(a)
0
〈
λRλU

†〉 , (3.20)

where g(a)
0 , g̃

(a)
0 , ĝ

(a)
0 , ğ

(a)
0 denote LECs, and the superscripts like g(a)

(15L⊕3L)⊗3̄R
are introduced

to distinguish LECs that correspond to the same irrep, but may in principle be different
when they are derived from other operators of LEFT. Any linear combination of these
traces gives a chiral term consistent with the SU(3)L × SU(3)R symmetry of the underlying
LEFT operator, yet still does not account for the discrete space-time symmetries. The
inclusion of the correct C, P , and T transformations in the chiral operator implies an
appropriate linear combination of these four traces, while the LECs are constrained to be
the same up to a sign (multiplied by a factor of i if necessary), as already done for the
mass term

〈
χU † + χ†U

〉
in the original work of ref. [52]. Hence the corresponding C- and

CP -odd operator takes the form

i
〈
(λλLU † + λ†λRU)− (λLλ†U + λRλU

†)
〉
, (3.21)

with only one overall LEC that can conventionally be chosen to be g(a)
(15L⊕3L)⊗3̄R

g
(a)
0 or any

of the four combination of LECs listed in eq. (3.20).16 The expression in each parenthesis is
14Translating each quark bilinear separately from LEFT to χPT has hidden complications. In ref. [41] this

was done to illustrate examples of operators in χPT. In general there is no guarantee for the completeness
of the operator basis, neither for the correct assignment of independent LECs nor for finding the lowest
contributing order. We thank Peter Stoffer for pointing this out to us. The last of these aspects is also
mentioned in ref. [61]. Moreover, the translation of separate bilinears is doomed to fail if non-trivial color
structures occur, as we can only translate color-neutral objects to χPT.

15In general, one can neither multiply any additional chirally invariant trace that contains only fields
U and less than two derivatives, as all such traces can be brought to the form

〈
DµUU

†〉 = 0 using the
unitarity of U and the cyclic property of the trace.

16In the literature one often introduces a set of (anti-)hermitian chiral building blocks, cf. for instance
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parity-invariant on its own, while the relative minus sign ensures C violation. An imaginary
unit in front of the trace is required by hermiticity and the T -odd nature of the initial
LEFT operator.17 Analogously, we find the operator

i
〈
λU † − λ†U〉〈λL − λR〉 (3.22)

for the case where the spurions appear in two different traces. Unfortunately, both of the
operators in eqs. (3.21) and (3.22) vanish once the spurions are set to their physical values
described previously. Hence, we must move to the next higher order O(p2) and proceed
in the same manner. This order is obviously more intricate, as we have to consider more
chiral building blocks from eq. (3.5). Since the strategy should be clear by now, we directly
write down our results for all independent traces of combinations of spurions and chiral
building blocks that form hermitian C-, CP -, and T -odd operators that are at the same
time chiral and Lorentz invariants and do not vanish after the spurions acquire their physical
realizations. Henceforth we will drop all LECs belonging to chiral irreps, like g(a)

3L⊗(1̄5R⊕3̄R),
as they can always be absorbed by the relative LECs between each operator. Up to O(p2)
we obtain:

X
(a)
ψχ = v

Λ4 c
(a)
ψχ

[
ig

(a)
1
〈
λDµU

† + λ†DµU
〉〈
λLD

µU †U + λRD
µUU †

〉
+ ig

(a)
2
〈
(λD2U †UλLU † + λ†D2UU †λRU)

− (λ†UλLD2U †U + λU †λRD2UU †)
〉

+ ig
(a)
3
〈
(λDµU

†DµUλLU
† + λ†DµUDµU

†λRU)

− (λ†UλLDµU
†DµU + λU †λRDµUDµU

†)
〉

+ ig
(a)
4
〈
(λDµU

†UλLDµU † + λ†DµUU †λRDµU)

− (λ†DµUλLU
†DµU + λDµU †λRUDµU

†)
〉

+O(p4)
]
.

(3.23)

Keeping the implicit dependence of λL/R and λ(†) on the flavor ψ, χ in mind, each of the
for summands proportional to the g(a)

i gives in principle rise to nine operators, i.e., one for
each combination of flavor indices.

There is also another color contraction for the underlying LEFT operator O(a)
ψχ; as

stated in ref. [59] this leads to the same operator basis but merely with different LECs.
However the latter can always be absorbed by redefining the LECs in eq. (3.23).

3.4.2 The quark bilinear operator
The matching of

O(b)
ψ = c

(b)
ψ ψ̄T aσµνψFµρG

aρ
ν , (3.24)

refs. [91–94], which make it easier to get rid of redundancies in higher-order operators. These building blocks
are eigenstates of the discrete symmetries and thus already have constraints imposed on the LECs, at least
to some extent, built in. However, as we are interested in leading contributions of C- and CP -violating
effects, the more historic building blocks quoted in eq. (3.5) do not have any major disadvantage.

17The constraints of hermiticity and the correct T transformation are often correlated.
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proceeds in the same manner, but includes further subtleties due to the presence of the
photonic and gluonic field-strength tensor. Once more we start with the decomposition in
chiral irreps by

O(b)
ψ = c

(b)
ψ

[
q̄R∆(b)

µνσ
µνλqL + q̄L∆(b)

µνσ
µνλ†qR

]
(3.25)

with ∆(b)
µν ≡ T aGaρν Fµρ, λ̂(†)

ψψ ≡ λ(†) with the same transformations under the gauge group
action and discrete symmetries as quoted in eqs. (3.17) and (3.18). Again, when setting
the spurions to their physical values we can apply λ = λ†.

The quark-gluon structure of this operator is a Lorentz tensor coupling to the photonic
field-strength tensor Fµν . If we allow for further interactions of the photon with quarks,
Fµν has to be treated in the same manner as Gµν in the course of our matching procedure.
However, these contributions are suppressed by the QED coupling α. Working at lowest
order in α, Fµν on its own cannot contribute to hadronic states and can thus be considered
a fixed external source. In this case the corresponding χPT operator for O(b)

ψ has to take
the form

X
(b)
ψ = v

Λ4 c
(b)
ψ

(
X

(b)
ψ

)µν
Fµν , (3.26)

with a mesonic Lorentz tensor
(
X

(b)
ψ

)µν that includes the traces over spurions and chiral
building blocks.18 As a consequence

(
X

(b)
ψ

)µν must not be symmetric under µ↔ ν and X(b)
ψ

has to be at least of chiral order p4.19 In accordance with ref. [99], the gluon in eq. (3.24),
which is a chiral singlet, merely enters X(b)

ψ as an overall constant that can — together with
all unknown non-perturbative QCD effects — be absorbed in the LECs. Apart from this,
the external source Fµν already reproduces the correct discrete symmetries of the operator
O(b)
ψ , such that

(
X

(b)
ψ

)µν has to be matched to an operator that preserves C, P , and T

separately. As we search for a Lorentz tensor at lowest possible order, we either have to
build the chiral operator with two derivatives acting on matrices U (†) or one field-strength
tensor fµνL/R. In the first of these cases both derivatives have to enter the same trace, as a
trace without spurions and only one derivative, i.e.,

〈
DµUU †

〉
, vanishes. However, as we

have only one spurion, these single traces are always symmetric under the exchange µ↔ ν,
which can easily be seen using DµUDνU † = −(UDµU †)(UDνU †). For the remaining option
with fµνL/R the relative signs within each trace are fixed by the correct C transformation.
These relative signs lead to a cancellation of the respective traces, since λ(†) and fµνL/R are
diagonal and therefore commute, and furthermore for physical values λ = λ† and fµνL = fµνR .
Hence, there is no non-vanishing contribution to X(b)

ψ at order p4. To find chiral analogs of
the LEFT operator O(b)

ψ we must extend our search to operators at order p6. However, the
derivation of the complete operator set at this order is beyond the scope of our analysis.
Although X(b)

ψ is suppressed in the chiral power counting compared to the one found in
eq. (3.23), it may still be of relevance for physical applications, as it can contribute with a
different field content and different quantum numbers, e.g., partial waves.

18As for any external source one can in general take derivatives of Fµν . However, these derivatives can be
shifted into the hadronic part of X(b)

ψ by partial integration.
19We need at least two Lorentz indices, which according to eq. (3.5) result in one power in the chiral

counting each, to build
(
X

(b)
ψ

)µν . Moreover, we know that Fµν is of order p2 .
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Remember, throughout we will, for all operators, work at the lowest order in α and
hence treat Fµν and semi-leptonic bilinears as fixed external sources.20

3.4.3 Semi-leptonic operators

Starting with O(c)
`ψ , we can in this case match the quark-gluon structure, which is simply

given by the axialvector current ψ̄γµγ5ψ, onto χPT by identifying traces built from the
spurions λL/R that are Lorentz vectors and have the signature CPT = +−+. The operator
complying with these requirements is

X
(c)
`ψ = v

Λ4 c
(c)
`ψ g

(c)
1
(¯̀D~~µγ5`

)
i
〈
λLD

µU †U − λRDµUU †
〉

+O(p4) . (3.27)

Regarding the mesonic analog of O(d)
`ψ , it can be easily checked that there is no contribution

to X(d)
`ψ at O(p2).

3.5 Matching dimension-8 LEFT operators

In this section we quote our results for the χPT expressions derived from the dimension-8
quark level in LEFT. Again we restrict the chiral basis to linear contributions in 1/Λ4,
lowest order in α, as well as to O(p2) for gluonic operators and O(p4) for photonic and
photo-gluonic ones, or in other words the lowest order for each contribution.

3.5.1 Gluonic operators

There is only one leading-order contribution to X(e)
ψ

c
(e)
ψ

Λ4 i
〈(
λLD

2U †U + λRD
2UU †

)− (λLU †D2U + λRUD
2U †

)〉
+O(p4), (3.28)

which vanishes for physical values of the spurions as demanded by the equations of mo-
tion (3.9). Thus X(e)

ψ starts at the next higher order. We refrain from deriving the numerous
contributions of higher orders at this early stage in the analysis of ToPe operators and
proceed similarly for all other operators.

The LEFT operators O(f,g,h,i,j) differ only in their color contractions and their vector or
axialvector Dirac structure and therefore map to the same χPT operator, but with different

20If we allow Fµν to hadronize, every of our remaining LEFT operators with a photonic field-strength
tensor maps onto the same χPT expression as a corresponding gluonic one, but with different LECs and an
additional suppression in α.
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LECs. They cannot be distinguished at the mesonic level and give rise to the operator

X
(f,g,h,i,j)
ψχ = 1

Λ4 c
(f,g,h,i,j)
ψχ

×
[
ig

(f,g,h,i,j)
1

〈(
λLU

†D2UU †λ̃RU + λRUD
2U †Uλ̃LU †

)
− (λ̃RUD2U †UλLU † + λ̃LU

†D2UU †λRU
)〉

+ ig
(f,g,h,i,j)
2

〈(
λLDµU

†UDµU †λ̃RU + λRDµUU
†DµUλ̃LU

†)
− (λLU †λ̃RDµUU

†DµU + λRUλ̃LDµU
†UDµU †

)〉
+ ig

(f,g,h,i,j)
3

〈(
λLD

2U †λ̃RU + λRD
2Uλ̃LU

†)
− (λ̃RD2UλLU

† + λ̃LD
2U †λRU

)〉
+ ig

(f,g,h,i,j)
4

〈
λLU

†λ̃RU − λRUλ̃LU †
〉〈
χ†U − χU †〉

+O(p4)
]
,

(3.29)

where we defined the products of Wilson coefficients and LECs by c
(f,g,h,i,j)
ψχ g

(f,g,h,i,j)
i ≡∑

z=f,g,h,i,j c
(z)
ψχg

(z)
i . We will use this notation throughout for any combination of indices.

The diagonal matrices λL/R(λ̃L/R) project out the flavor ψ(χ) in complete analogy to the
definitions in the previous sections. Some terms can be discarded using

〈
D2UU †−D2U †U

〉
=

Dµ
(〈
DµUU † −DµU †U

〉)
= 0, which can also easily be deduced from eq. (3.9).

Analogously, O(k) and O(l) can be projected onto one single mesonic operator. The
peculiarity of these quadrilinears is that the physical values of their spurions, let us call
them λ̂ψχ ≡ λ and λ̂χψ ≡ λ̃, appearing in the two contributing bilinears are no eigenstates
of hermitian conjugation. To simplify the evaluation we introduce the hermitian and
antihermitian combinations λ± = λ± λ̃.21 When the spurions acquire their physical values,
we can set λ†+ = λ+, λ†− = −λ−, λ±λ†± = 1, and λ+λ− = −λ−λ+, independently of their
explicit flavor indices. Moreover, the λ± are real and thus λT± = λ†±. As λ and λ̃ transform
according to the first line in eq. (3.18), the discrete symmetries of λ± become

λ±
C←−→ λT± , λ±

P←−→ ±λ†± , λ±
T←−→ λ± . (3.30)

The minus sign for the parity transform of λ− may be unintuitive, but compensates for the
fact that λ− is anti-hermitian, i.e., after inserting the physical values λ− is invariant under
parity as it should. With this new set of spurions — and noting that the antisymmetry of
the LEFT operator under ψ ↔ χ demands that one bilinear includes λ(†)

+ while the other
one has to contain λ(†)

− — we can evaluate the χPT analogs of O(k,l)
ψχ in the familiar way.

However, we do not find any operator at chiral order p2 and hence ignore the contribution
of X(k,l)

ψχ for now.
Analogously, the symmetry of the operator O(m)

ψχ under ψ ↔ χ demands that either
both quark bilinears include all possible combinations of the spurions λ(†)

− λ
(†)
− or of λ(†)

+ λ
(†)
+ .

Again there is no non-vanishing C- and CP -odd mesonic operator at leading order.
21Going back to the irreducible representation of a general quark multilinear from eq. (3.13), this

redefinition of the spurions merely leads to another redefinition of the LECs.
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3.5.2 Photonic operators

As previously seen for the gluonic operators, we can again match several photonic operators
from LEFT to the same χPT operator upon redefining the LECs. Hence the mesonic
counterpart of the operator O(n,o,p,q)

ψχ yields to lowest order

X
(n,o,p,q)
ψχ = 1

Λ4 c
(n,o,p,q)
ψχ[

g
(n,o,p,q)
1 εαβµν

〈(
λLU

†λ̃Rf
αβ
R U − λRUλ̃LfαβL U †

)
+
(
λ̃RUλLU

†fαβR − λ̃LU †λRUf
αβ
L

)〉
+ g

(n,o,p,q)
2

〈
λLDµU

†U + λRDµUU
†〉〈λ̃LDνU

†U + λ̃RDνUU
†〉

+ g
(n,o,p,q)
3

〈
λLDµU

†U − λRDµUU
†〉〈λ̃LDνU

†U − λ̃RDνUU
†〉]

× Fµν +O(p6) .

(3.31)

Note that the ε-tensor flips sign under P and T . The photonic LEFT quadrilinear O(r)
ψχ,

mixing quark flavors in each bilinear, can again be conveniently matched using the (anti-)
hermitian spurions λ(†)

± . But once more, we do not find any operator up to and including
chiral order p4.

3.5.3 Photo-gluonic operators

Both photo-gluonic operators O(s,t)
ψ map onto the same χPT expression

X
(s,t)
ψ = 1

Λ4 c
(s,t)
ψ g

(s,t)
1 εαβµν

〈
λLU

†fαβR U − λRUfαβL U †
〉
Fµν +O(p6) . (3.32)

3.5.4 Semi-leptonic operators

We find that the C- and CP -violating contributions from the gluonic semi-leptonic operators
O(u)
`ψ , O(v)

`ψ vanish at O(p2), while the photonic ones O(w)
`ψ , O(x)

`ψ give rise to

X
(w)
`ψ = 1

Λ4 c
(w)
`ψ g

(w)
1 i

〈
λLDνU

†U + λRDνUU
†〉¯̀γµ`Fµν +O(p6) (3.33)

and
X

(x)
`ψ = 1

Λ4 g
(x)
1 c

(x)
`ψ i

〈
λLDνU

†U − λRDνUU
†〉¯̀γµγ5`F

µν +O(p6) , (3.34)

respectively.

3.6 Summary of the effective C- and CP -odd Lagrangian

In the preceding sections we derived the lowest possible contributing order of mesonic
operators for all flavor-conserving, neutrinoless C- and CP -violating sources (except purely
leptonic ones) that preserve baryon and lepton number up to dimension 8 in LEFT. Working
to lowest order in the QED coupling α, i.e., treating photons and leptons as fixed external
sources, these contributions start at O(p2) for gluonic and semi-leptonic operators and at
O(p4) for photonic ones. We identified that the 24 LEFT operators O(a)

ψχ, . . . ,O
(x)
`χ (without
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counting different flavor combinations) listed in eqs. (2.10)–(2.15) give in general rise to 15
different groups of operators X(z) on the mesonic level, which build the full chiral Lagrangian

L/CP /T =
∑
ψ,χ,`

[
X

(a)
ψχ +X

(b)
ψ +X

(c)
`ψ +X

(d)
`ψ +X

(e)
ψχ +X

(f,g,h,i,j)
ψχ +X

(k,l)
ψχ +X

(m)
ψχ

+X
(n,o,p,q)
ψχ +X

(r)
ψχ +X

(s,t)
ψ +X

(u)
`ψ +X

(v)
`ψ +X

(w)
`ψ +X

(x)
`ψ

]
.

(3.35)

In this Lagrange density, the terms X(a)
ψχ , X

(b)
ψ , X(c)

`ψ , X
(d)
`ψ originate from dimension 7 of

LEFT, the rest from dimension 8. The contributions of order p2 for the gluonic operators
X

(a)
ψχ , X

(f,g,h,i,j)
ψχ can be found in eqs. (3.23) and (3.29), respectively, while X(e)

ψχ, X
(k,l)
ψχ , X(m)

ψχ

start at higher orders. The photonic operator X(n,o,p,q)
ψχ is mapped to its lowest possible

order p4 in eq. (3.31), whereas X(r)
ψχ first appears at O(p6). For the photo-gluonic operators

we find that X(b)
ψ only starts at O(p6), and X(s,t)

ψ at O(p4) is given in eq. (3.32). Finally,
the lowest possible contribution at O(p2) to the semi-leptonic operators X(c)

`ψ , X
(w)
`ψ , X(x)

`ψ

are listed in eqs. (3.27), (3.33), and (3.34), while X(d)
`ψ , X(u)

`ψ , X(v)
`ψ start at higher orders.

4 The large-Nc extension

So far, the framework of ToPeχPT covers the sector of the meson octet. It can, however, be
generalized to include the singlet η′, whose mass Mη′ remains non-vanishing in the chiral
limit due to the U(1)A anomaly, in a straightforward manner. Taking the number of colors
Nc to be large, this anomaly is suppressed, so that the η′ is rendered massless and takes
the role of the ninth Goldstone boson.

As a consequence for the perturbative treatment in the effective low-energy theory, not
only the momentum p but also Mη′ needs to be considered as small. This can be achieved
by simultaneously expanding the chiral Lagrangian in soft momenta, light quark masses,
and powers of 1/Nc. One hence introduces a small counting parameter δ and uses

p = O
(√

δ
)
, m = O(δ) , 1/Nc = O(δ) . (4.1)

The large-Nc extension of SMχPT has been subject to many previous analyses, see for
instance refs. [100–108] and the numerous references therein. As these considerations rely
on general gluon dynamics, we can apply the large-Nc extension in this section to ToPeχPT
without much trouble, and refer to the abovementioned works for further details.

To include the singlet in our formalism at the level of the general Lagrangian from
eq. (3.1), we add the term LNc ≡ θω with a new external source θ, whose physical value is
the QCD vacuum angle θQCD, and the winding number density ω = g2/(32π2)GaµνG̃aµν .22

The first modifications we have to make in order to enhance the SU(3)L×SU(3)R symmetry
to U(3)L ×U(3)R is to replace

U 7→ Ū = eiϕU , (4.2)
22Note that none of the LEFT operators considered in this work can contribute to a singlet under SU(3)L×

SU(3)R, so that LNc , which arises naturally from QCD, is indeed the only external source with the desired
transformation property we can add to eq. (3.1).
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where ϕ ≡
√

2/3 η0/F0, and the new chiral transformation reads Ū → RŪL† with L ∈ U(3)L
and R ∈ U(3)R. The remaining chiral building blocks stay unchanged, except that they
transform with L,R as elements of U(3)L,R instead of SU(3)L,R. We shall not introduce
a new notation for the large-Nc case of these building blocks, which is unambiguously
fixed by the use of either U or Ū in each operator. At leading order, the octet and singlet
components η8 and η0 are related to the physical mass eigenstates by the single-angle mixing
scheme (

η8
η0

)
=
(

cos θ sin θ
− sin θ cos θ

)(
η

η′

)
. (4.3)

Henceforth we work with the ideal mixing angle θ = arcsin(−1/3), so that

Ū = exp
(
iΦ̄
F0

)
, with Φ̄ =


1√
3η
′ +

√
2
3η + π0 √

2π+ √
2K+

√
2π− 1√

3η
′ +

√
2
3η − π0 √

2K0
√

2K−
√

2K̄0 2√
3η
′ −

√
2
3η

 .

(4.4)
For convenience and later use we quote ϕ in terms of the physical η and η′ fields, i.e.,

ϕ =
√

2
3
√

3F0
η + 4

3
√

3F0
η′ . (4.5)

We have to introduce new building blocks from the pure singlet contribution, which are

(ϕ+ θ)→ (ϕ+ θ) , Dµϕ→ Dµϕ , Dµθ → Dµθ , (4.6)

with
Dµϕ ≡ ∂µϕ− 2

〈
aµ
〉

and Dµθ ≡ ∂µθ + 2
〈
aµ
〉
, (4.7)

where 2
〈
aµ
〉

=
〈
rµ − lµ

〉
is the singlet axial current discussed in more detail in ref. [107].23

With these new building blocks we cannot only construct completely new operators, e.g.,
by contracting a vector operator with Dµϕ or Dµθ, but can also multiply any Lorentz
invariant combination of them to any operator without affecting the transformation under
U(3)L × U(3)R. As ϕ and θ transform as CPT = + − − [106], odd powers of them will
change the discrete symmetries of the overall operator.

However, we do not have to consider the infinite amount of all new operators that
arise from insertions of the elements in eq. (4.6), as the latter affect the power counting in
δ, which can be summarized as follows. Traceless operators are subject to purely gluonic
interactions, which scale at leading order as N2

c . Each trace in flavor space originates from
one quark loop, leading to a suppression of 1/Nc. Moreover each ϕ and θ counts as another
factor 1/Nc. Hence the generalized power counting in large-Nc χPT, i.e., the order of δ,
can be understood as

Oδ = −2 +Ntr + 1
2Nχ +Nϕ , (4.8)

where Ntr denotes the number of traces, Nϕ indicates the power of ϕ and θ, and Nχ ≡
Np + 2Nm is the power counting in standard χPT as described in section 3.1, which keeps

23More precisely, we have ϕ→ ϕ− i ln(detR) + i ln(detL) and θ → θ+ i ln(detR)− i ln(detL), so that ϕ
and θ are not invariant on their own. However, Dµϕ and Dµθ are still invariant as separate quantities.
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track of the power of soft momenta Np and the power of light quark masses Nm. This
power counting allows for four different contributions at order δ0, namely (Ntr, Nχ, Nϕ) ∈
{(2, 0, 0), (1, 2, 0), (1, 0, 1), (0, 0, 2)}, out of which only (1, 2, 0) can contribute to a C-odd
operator. Hence the leading contribution to all gluonic operators at large Nc can directly
be read off the respective contributions in standard ToPeχPT, which consist of one single
trace. Similarly, all photonic and photo-gluonic operators start at O(δ) in large-Nc, as they
require Nχ ≥ 4 and can thus be obtained by the corresponding ToPeχPT operators with
Ntr = 1, Nϕ = 0. Considering the matching of LEFT operators that initially had no chiral
counterpart at O(p2) for Nc = 3, the chiral singlets from eq. (4.6) allow for new chirally
invariant operators in the large-Nc limit, so that these LEFT sources may indeed show up
at O(p2) but at higher order in δ.

For convenience we quote the order δ0 analog to eq. (3.35) in the large-Nc limit as

L̄/CP /T = iv

Λ4
∑
ψ,χ,`

[
c

(a)
ψχḡ

(a)
2
〈
(λD2Ū †ŪλLŪ † + λ†D2Ū Ū †λRŪ)− h.c.

〉
+ c

(a)
ψχḡ

(a)
3
〈
(λDµŪ

†DµŪλLŪ
† + λ†DµŪDµŪ

†λRŪ)− h.c.
〉

+ c
(a)
ψχḡ

(a)
4
〈
(λDµŪ

†ŪλLDµŪ † + λ†DµŪ Ū †λRDµŪ)− h.c.
〉

+ c
(c)
`ψ ḡ

(c)
1

¯̀D~

~

µγ5`
〈
λLD

µŪ †Ū − λRDµŪ Ū †
〉

+ 1
v
c

(f,g,h,i,j)
ψχ ḡ

(f,g,h,i,j)
1

〈(
λLŪ

†D2Ū Ū †λ̃RŪ + λRŪD
2Ū †Ū λ̃LŪ †

)− h.c.
〉

+ 1
v
c

(f,g,h,i,j)
ψχ ḡ

(f,g,h,i,j)
2

〈(
λLDµŪ

†ŪDµŪ †λ̃RŪ + λRDµŪ Ū
†DµŪ λ̃LŪ

†)− h.c.
〉

+ 1
v
c

(f,g,h,i,j)
ψχ ḡ

(f,g,h,i,j)
3

〈(
λLD

2Ū †λ̃RŪ + λRD
2Ū λ̃LŪ

†)− h.c.
〉

+O(δ)
]
.

(4.9)
Interactions at higher order in δ can be obtained by the procedure described above. In the
following sections we will refer to the large-Nc limit of a ToPeχPT operator X(z)

ψχ as X̄(z)
ψχ .

As a final remark, all operators in ToPeχPT and its large-Nc extension that only differ
by the shift U → Ū carry the same LECs at leading order, as is the case for the leading
order in large-Nc SMχPT [107]. Nevertheless, we will still denote the LECs in the large-Nc

theory by ḡ(z)
i to be as general as possible.

5 Application to C- and CP -violating decays

Up to now, various experiments have actively searched for C violation in η decays (in the
following we will use the abbreviation η(′) to refer to both η and η′), as in η(′) → 3γ [109–
111], η → π0γ [112], η(′) → π0`+`− [113–115] and η′ → η`+`− [114, 115] driven by a single
virtual photon, η → π+π−γ [116–118], η → 2π0γ [111, 119], η → 3π0γ [111, 119], and in
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π0 → 3γ [120], without strong empirical evidence for this kind of BSM physics.24 However,
in the foreseeable future the new experimental setups from the REDTOP [72–74] and
JEF [75–77] collaborations will search for rare η(′) decays with an increased accuracy that
may allow us to set more stringent bounds on ToPe forces.

The model-independent effective theory derived in the previous sections provides the
theoretical foundation to identify the most promising decays to observe and to figure out
any, as yet unknown, correlation between different C- and CP -violating transitions. As
the sources of the latter are rigorously worked out on the quark level, we can provide the
explicit dependence of C- and CP -odd observables on the new-physics scale Λ. To this
end, we not only restrict our analysis to pure BSM processes, but also investigate the
interference of SM and C-violating contributions for suitable candidates. A list of all decays
considered in this work is contained in table 2, which summarizes our results in a compact
way. Each C- and CP -odd contribution to these decays, except for η → 3π0γ, exhibits a
unique representation in terms of mesonic degrees of freedom. Identifying these mesonic
operators first eases the search for a corresponding ToPeχPT operator that generates the
desired transition. These chiral operators in turn can be related to the underlying quark
operators. For a consistent treatment of η and η′ decays, we will work with ToPeχPT in the
large-Nc limit with generalized power counting in δ throughout, as explained in section 4.
However, we may still quote the power counting in soft momenta p, because it is directly
visible in the operators at the mesonic level. As central numeric results of this work we
give the theoretical estimates of observables in dependence on Λ (explained in more detail
below), while the limits that can be set on Λ with the currently most precise measurements
are quoted in the respective sections. In the rest of this manuscript we explain in detail the
assumptions and simplifications entering table 2.

First of all, we need to emphasize that the computation of most of the considered
decays with ToPeχPT is rather meant to be a proof of principle. As we will see in the
following, a rigorous evaluation would require the complete construction of the chiral basis
for all C- and CP -odd LEFT operators also including higher orders in ToPeχPT, which
leads to a large number of free LECs that cannot be fixed at the present stage. Therefore we
do not investigate each single ToPeχPT operator. Instead, we focus on one set of operators
that stands out, namely the ones derived from the LEFT source

O(a)
ψχ = v

Λ4 c
(a)
ψχ ψ̄D

~

~

µγ5ψχ̄γ
µγ5χ , (5.1)

for which, in comparison to eq. (2.10), we restored the explicit dependence on the EFT scale.
This is the only LEFT operator able to generate the C- and CP -violating contributions to
all mesonic decays listed in table 2 at the corresponding leading orders in p. The special
feature that makes this operator unique in our analysis and allows us to in particular
generate η(′) → π0π+π− at lowest order is its compositeness of both spurions λ(†) and λL,R.

24Some of the listed decays may in principle also be driven by C- and P -odd operators, which are not
covered by our framework. These contributions have less physical motivation, as they conserve CP , and are
beyond the scope of this work. Therefore we assume all decay widths of C-violating amplitudes to originate
solely from sources with additional T violation and ignore possible P -violating effects at this stage.

– 26 –



J
H
E
P
0
6
(
2
0
2
3
)
1
5
4

Decay Mesonic operator Lowest order Current measurement Theoretical estimate Section

η(′) → π0π+π− i η(′)∂µπ0(π+∂µπ− − π−∂µπ+) p2 (δ0) g2 = −9.3(4.5) · 103/TeV2 [121] |g2| ∼ 3 · 10−4 TeV2/Λ4 5.1

η′ → ηπ+π− i η′∂µη(π+∂µπ− − π−∂µπ+) p2 (δ1) g1 = 0.7(1.0) · 106/TeV2 [121] |g1| ∼ 3 · 10−4 TeV2/Λ4 5.2

η(′) → π0γ∗ ∂µη
(′) ∂νπ0Fµν p4 (δ2) — — 5.3

η′ → ηγ∗ ∂µη
′ ∂νηFµν p4 (δ2) — — 5.3

η → π0e+e− η∂µπ
0 ēγµe p2 (δ1) BR < 7.5 · 10−6 [113] BR ∼ 7 · 10−27 TeV8/Λ8 5.4

η → π0µ+µ− η∂µπ
0 µ̄γµµ p2 (δ1) BR < 5 · 10−6 [115] BR ∼ 2 · 10−27 TeV8/Λ8 5.4

η′ → π0e+e− η′∂µπ0 ēγµe p2 (δ1) BR < 1.4 · 10−3 [114] BR ∼ 9 · 10−28 TeV8/Λ8 5.4

η′ → π0µ+µ− η′∂µπ0 µ̄γµµ p2 (δ1) BR < 6 · 10−5 [115] BR ∼ 6 · 10−28 TeV8/Λ8 5.4

η′ → ηe+e− η′∂µη ēγµe p2 (δ1) BR < 2.4 · 10−3 [114] BR ∼ 9 · 10−29 TeV8/Λ8 5.4

η′ → ηµ+µ− η′∂µη µ̄γµµ p2 (δ1) BR < 1.5 · 10−5 [115] BR ∼ 3 · 10−29 TeV8/Λ8 5.4

η → π+π−γ εαβµν η
(
∂νπ+∂ρ∂µπ− + ∂νπ−∂ρ∂µπ+)∂ρFαβ p6 (δ2) ALR = 0.009(4) [81] |ALR| ∼ 5 · 10−16 TeV4/Λ4 5.5

η′ → π+π−γ εαβµν η
′(∂νπ+∂ρ∂µπ− + ∂νπ−∂ρ∂µπ+)∂ρFαβ p6 (δ2) ALR = 0.03(4) [81] |ALR| ∼ 1 · 10−14 TeV4/Λ4 5.5

η → π0π0γ εαβµν η
(
∂νπ0∂ρ∂µπ0 + ∂νπ0∂ρ∂µπ0)∂ρFαβ p6 (δ3) BR < 5 · 10−4 [119] BR ∼ 1 · 10−29 TeV8/Λ8 5.6

η′ → π0π0γ εαβµν η
′(∂νπ0∂ρ∂µπ0 + ∂νπ0∂ρ∂µπ0)∂ρFαβ p6 (δ3) — BR ∼ 2 · 10−28 TeV8/Λ8 5.6

η′ → ηπ0γ εαβµν η
′∂µη∂νπ0Fαβ p4 (δ3) — BR ∼ 2 · 10−28 TeV8/Λ8 5.7

η′ → ηπ0π0γ η′∂µηπ0∂νπ0Fµν p4 (δ2) — BR ∼ 2 · 10−32 TeV8/Λ8 5.8

η → 3π0γ ∂µη∂νπ
0∂απ0π0∂αFµν p6 (δ3) BR < 6 · 10−5 [119] BR ∼ 1 · 10−35 TeV8/Λ8 5.9

η′ → 3γ εµνρσ∂αη
′(∂γFαβ)(∂γ∂βFρσ)Fµν p10 (δ4) BR < 1 · 10−4 [109] BR ∼ 3 · 10−35 TeV8/Λ8 5.10

η → 3γ εµνρσ∂αη(∂γFαβ)(∂γ∂βFρσ)Fµν p10 (δ4) BR < 4 · 10−5 [112] BR ∼ 1 · 10−36 TeV8/Λ8 5.10

π0 → 3γ εµνρσ∂απ
0(∂γFαβ)(∂γ∂βFρσ)Fµν p10 (δ4) BR < 3.1 · 10−8 [120] BR ∼ 2 · 10−43 TeV8/Λ8 5.10

Table 2. Overview of C- and CP -odd decays analyzed in this work. At the lowest possible order
in soft momenta p, each process exhibits a unique representation in terms of mesonic degrees of
freedom (up to overall normalizations and partial integration) as quoted in the second column,
except for the decay η → 3π0γ, for which we list only one possible momentum assignment. Each
operator can be seen as part of a Lagrangian once multiplied with a real-valued coupling constant.
The decays are ordered according to increasing number of photons (the dilepton decays are assumed
to proceed via single virtual photons), and furthermore according to increasing number of mesons
involved. As numerical results we quote the explicit dependence on the BSM scale Λ derived from
the LEFT operator ψ̄D~

~

µγ5ψχ̄γ
µγ5χ in the fifth column. The assumptions and simplifications these

results (i.e., coupling constants g1,2, left-right asymmetries ALR, and branching ratios BR) rely on,
can be found in the main text and referenced sections.

These are the only decays, according to the third row in table 2, that occur at lowest order
in δ and p.25

Comparing the fourth and fifth columns of table 2 we see that in order to set a realistic
lower limit on Λ in the TeV range, the biggest chance to find evidence for ToPe forces
in future experiments is given by processes including an interference of SM and BSM
contributions. This is no surprising result, as the respective observables scale linearly with
BSM physics [122], i.e., with 1/Λ4, as opposed to purely C-odd decays that can only be
observed by quadratic effects scaling with 1/Λ8. Still, one can judge from our numerical
results which pure BSM processes are more suitable candidates for experimental setups
than others, e.g., π0 → 3γ is the least suitable one since a realistic limit on Λ ∼ 1TeV would

25The remaining non-vanishing terms in the leading-order Lagrangian from eq. (4.9) contribute either to
interactions of the type η′η(π+∂µπ− + π−∂µπ+)Aµ or to operators with a larger number of mesons.
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require the experiment to measure a branching ratio that is roughly 1035 times smaller than
the currently most stringent limit.

Before investigating each decay appearing in table 2 in detail, we would like to comment
on the method we use to estimate the included coupling constants. As a rough order-of-
magnitude estimate we rely on naive dimensional analysis (NDA) [123–127]. The latter
describes a method to estimate the scale of coupling constants of an effective field theory
by simply counting powers of the mass dimension and keeping track of factors of 4π in each
operator. This simple kind of power counting already proved to be very successful when
estimating the order of magnitude of the LECs at O(p4) in SMχPT, as illustrated in ref. [127].
To properly account for the matching of LEFT and ToPeχPT at the renormalization scale
Λχ = 4πF0 we pursue the following strategy: for a generic coupling g in any of our EFTs
we introduce, in accordance to Weinberg’s power counting scheme [124], a reduced coupling
constant

g̃ ≡ (4π)2−nΛd−4
χ g , (5.2)

where n indicates the number of involved fields and d is the canonical dimension of the
operator, i.e., the overall mass dimension of fields and derivatives but without counting
couplings. This procedure renders the reduced coupling g̃ dimensionless and approximately
of order unity. We first consider the case without dynamical photons and apply the rescaling
to the coupling constant C(a)

ψχ ≡ v
Λ4 c

(a)
ψχ in eq. (5.1), yielding

C
(a)
ψχ ψ̄(~∂µ − ∂

~

µ)γ5ψχ̄γ
µγ5χ = (4π)2

Λ3
χ

C̃
(a)
ψχ ψ̄(~∂µ − ∂

~

µ)γ5ψχ̄γ
µγ5χ , (5.3)

where we obtained C̃(a)
ψχ = C

(a)
ψχΛ3

χ/(4π)2 ∼ O(1) from eq. (5.2) with n = 4 and d = 7. When
matching to a ToPeχPT operator with m photons, we have to include additional factors
of the reduced QED coupling, i.e., multiply the LEFT operator by em/(4π)m.26 In this
way we continuously keep track of what causes the χPT operator to occur, as necessary
for a consistent description by NDA. At the level of ToPeχPT we proceed analogously for
any given operator that is derived from this LEFT source and relate the LECs (ḡ(a)

i ) to
reduced ones (g̃(a)

i ). To connect the corresponding reduced LECs g̃(a)
i ∼ O(1) to LEFT

as the underlying theory we can set g̃(a)
i ∼ C̃

(a)
ψχ for mesonic operators without dynamical

photons (and similarly for ToPeχPT operators with additional photons). This is justified
as NDA merely provides an order of magnitude estimate for coupling constants, which may
well differ by a factor of a few. With this matching between reduced couplings in LEFT
and ToPeχPT we can read off the approximate order of magnitude for the LECs ḡ(a)

i , which
can be used as a numerical input for the chiral theory.

5.1 η(′) → π0π+π−

In this section we investigate possible C- and CP -violating contributions to the three-body
decay η(′) → π0π+π− with ToPeχPT. As already pointed out in ref. [122] these BSM

26This statement is consistent with Weinberg’s power counting. If we take for instance the minimal
coupling of a photon via the covariant derivative, i.e., the part left out in eq. (5.3), the NDA rule demands
the reduced coupling eC̃(a)

ψχ = eC
(a)
ψχΛ3

χ/(4π)3 ∼ O(1), as n = 5 and d = 7.
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contributions are driven by transitions of total isospin I = 0 and I = 2. Hence the
amplitude can be decomposed as

M 6C(s, t, u) =M 6C0 (s, t, u) +M 6C2 (s, t, u) . (5.4)

These contributions were constructed in ref. [121] using dispersion-theoretical methods.
Regression to the respective Dalitz-plot distribution [128] resulted in limits on the BSM
coupling constants g0, g2 ∈ R defined via

M 6C0 (s, t, u) ≈ ig0(s− t)(t− u)(u− s) ,
M 6C2 (s, t, u) ≈ ig2(t− u) .

(5.5)

While T violation arises naturally by the imaginary unit i, C violation is encoded in
the antisymmetry in the Mandelstam variables. In the following we investigate how to
reconstruct these amplitudes with ToPeχPT, so that g0 and g2 serve as input for this
effective theory allowing us to set limits on the BSM scale Λ.

5.1.1 Kinematics and isospin projections

We define the C- and CP -odd contribution to the T -matrix element of η(′) → π+π−π0 by〈
π+(p+)π−(p−)π0(p0)

∣∣iT ∣∣η(′)(Pη(′))
〉

= (2π)4 δ(4)(Pη(′) − p+ − p− − p0) iM 6C(s, t, u) (5.6)

and work in the isospin limit, i.e., Mπ ≡Mπ± = Mπ0 . The Mandelstam variables are chosen
to be

s = (Pη(′) − p0)2 , t = (Pη(′) − p+)2 , u = (Pη(′) − p−)2 , (5.7)

which are related to each other by

s+ t+ u = M2
η(′) + 3M2

π ≡ 3r . (5.8)

The isospin decomposition of the isoscalar and isotensor three-pion final states, i.e., |I = 0〉
and |I = 2〉 respectively, are given by [129]

|2(2)〉= 1
2

[(|π+π0π−〉 − |π−π0π+〉)+
(|π0π+π−〉 − |π0π−π+〉)],

|2(1)〉= 1
2
√

3

[(|π0π−π+〉 − |π0π+π−〉)− 2
(|π−π+π0〉 − |π+π−π0〉)

+
(|π+π0π−〉 − |π−π0π+〉)] ,

|0(1)〉= 1√
6

[(|π0π−π+〉 − |π0π+π−〉)+
(|π−π+π0〉 − |π+π−π0〉)

+
(|π+π0π−〉 − |π−π0π+〉)] ,

(5.9)

where the integer in parenthesis denote the isospin of the first two pions. From this Clebsch-
Gordan series one can already judge that the isoscalar and isotensor contributions are
antisymmetric under exchange of the charged pions and thus C-violating (the |0〉 state
has also an enhanced symmetry under exchange of any two pions). Hence each ToPeχPT
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operator that contributes to η(′) → π0π+π− can for instance be associated with an isospin
state of the form |π−π+π0〉− |π+π−π0〉. With eq. (5.9) we can project out the single isospin
contributions by means of27

|π−π+π0〉 − |π+π−π0〉 = 1√
3

(√
2 |0(1)〉 − 2 |2(1)〉

)
. (5.10)

5.1.2 Limits on the BSM physics scale

Starting from the large-Nc Lagrangian at leading order δ0, cf. eq. (4.9), we can evaluate the
matrix elementM 6C upon expanding Ū up to second order in Φ̄ and neglecting photons. We
will first investigate the decay of the η meson and discuss the η′ at the end of this section.

Whenever possible, we conventionally eliminate derivatives acting on the decay particle
by partial integration, helping us to find a more compact notation of our operators. The
operator generating the C- and CP -odd contributions to the desired decay is

L̄/CP /T = i
v

Λ4F 4
0

2Nη→3π η∂
µπ0(π+∂µπ

− − π−∂µπ+) + . . . , (5.11)

where the ellipsis includes operators that cannot generate the desired transition at O(δ0)
and the normalization, given as a linear combinations of Wilson coefficients and LECs,
reads

Nη→3π = 4
√

2
3
(
c(a)
uu − c(a)

ud − c
(a)
du + c

(a)
dd

)(
ḡ

(a)
3 − ḡ(a)

2
)
. (5.12)

We see that the leading-order contributions to η → π0π+π− arises solely from X̄
(a)
ψχ and

furthermore note that all contributions proportional to c(a)
ψχ with ψ = s and/or χ = s vanish.

The evaluation of the corresponding amplitudeM 6C yields

M 6C = i
v

Λ4F 4
0

2Nη→3π p0(p− − p+) = i
v

Λ4F 4
0
Nη→3π (t− u) . (5.13)

In order to match the included coupling constants to known observables, we first have to
separate the different isospin contributions to this matrix element. According to eq. (5.10),
M 6C decomposes into28

M 6C = 1√
3

(√
2M 6C0 − 2M 6C2

)
. (5.14)

The isoscalar and isotensor contributions in this equation can be evaluated in compliance
with eq. (5.9) by taking the appropriate linear combinations with interchange of pions.

27One could as well use |π+π0π−〉−|π−π0π+〉 = 1√
3 (
√

2|0(1)〉+ |2(1)〉+
√

3|2(2)〉) or the order |π0π−π+〉−
|π0π+π−〉 = 1√

3 (
√

2|0(1)〉+ |2(1)〉−
√

3|2(2)〉). As we cannot distinguish between the states |2(1)〉 and |2(2)〉
we can only make a statement for the overall isospin 2 contribution. The latter, as well as the overall isoscalar
contribution, is the same for all of the three sequences |π−π+π0〉 − |π+π−π0〉 , |π+π0π−〉 − |π−π0π+〉, and
|π0π−π+〉 − |π0π+π−〉, as long as we stay consistent in notation. Hence, it does not matter which order we
choose for the pions in the isospin state for our ToPeχPT operators.

28The decomposition in eq. (5.4), used for the dispersive approach in ref. [121], absorbs the relative factors√
2/3 and 2/

√
3 directly in the coupling constants g0 and g2, respectively.
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Noting that under π+ ↔ π− (π+ ↔ π0, π− ↔ π0) the Mandelstam variables exchange as
t↔ u, (t↔ s, s↔ u), the amplitudesM 6C0,2 become

M 6C0 = iNη→3π
v

Λ4F 4
0

1√
6
[
(s− t) + (t− u) + (u− s)] = 0 ,

M 6C2 = iNη→3π
v

Λ4F 4
0

1
2
√

3
[
(s− t)− 2(t− u)− (s− u)

]
= −iNη→3π

v

Λ4F 4
0

√
3

2 (t− u) ,

(5.15)
and henceM 6C = −2/

√
3M 6C2 at chiral order δ0.

Similarly, all contributions ofM 6C0 vanish in the isospin limit up to O(δ) and we thus
need at least six derivatives to have enough freedom to reproduce the totally antisymmetric
behaviour of the isospin 0 state. This fact was already known decades ago, cf. ref. [130].
Hence, to evaluate a possible contribution ofM 6C0 we have to construct the contributions to
X

(a)
χψ at order δ2. Unfortunately this involves the construction of an overwhelming amount of

operators with independent free parameters to fix the already strongly suppressed amplitude
M 6C0 . One can bring all of these numerous operators to the form of eq. (5.5) and effectively
fix one overall normalization that would correspond to g0. However, this would not provide
new physical insights, because these operators at order δ2 are less likely to contribute to
any other process in a meaningful way and the theory does thus not gain any predictive
power by fixing this normalization. Nevertheless, we give one arbitrarily chosen example
how the I = 0 contribution arises from X̄

(a)
ψχ , i.e.,

X̄
(a)
ψχ ⊃

v

Λ4 c
(a)
ψχḡ

(a)
0 i
〈(
λλL∂µ∂ν∂αŪ

†∂µ∂νŪ∂αŪ † + λ†λR∂µ∂ν∂αŪ∂µ∂νŪ †∂αŪ
)− h.c.

〉
,

(5.16)
as a proof of concept.

However, as we control the dominant isotensor contribution, we can use the result of
ref. [121], i.e., g2 = −0.0093(46)GeV−2, to place bounds on the BSM scale Λ. For simplicity,
we first consider the NDA estimate of a generic meson operator included in eq. (5.11) like

i
v

Λ4F 4
0
c

(a)
ψχḡ

(a)
i η∂µπ

0(π+∂µπ
− − π−∂µπ+) . (5.17)

According to Weinberg’s power counting from eq. (5.2) the reduced coupling for this generic
operator with n = 4 and d = 6 reads

G̃
(a)
i ≡

v

Λ4F 4
0
c

(a)
ψχḡ

(a)
i

Λ2
χ

(4π)2 ∼ O(1) . (5.18)

On the other side, we have already seen in eq. (5.3) that the reduced coupling for the
underlying LEFT operator X̄(a)

ψχ , with n = 4 and d = 7, is

C̃
(a)
ψχ ≡

v

Λ4 c
(a)
ψχ

Λ3
χ

(4π)2 ∼ O(1) . (5.19)

As both couplings are by construction of the same order of magnitude, we can set C̃(a)
ψχ ∼ G̃

(a)
i

to obtain ḡ(a)
i ∼ ΛχF 4

0 . As long as there is no unexpected fine tuning of the Wilson coefficients
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or LECs, we can apply the same NDA estimate to their linear combination encoded in
the normalization Nη→3π and therefore obtain Nη→3π ∼ ΛχF

4
0 . Combining this estimate

with the external input for the isotensor coupling (for simplicity we will only consider the
respective central value) by means of

M 6C = i
v

Λ4F 4
0
Nη→3π(t− u) != ig2(t− u) , (5.20)

the currently best experimental precision for the η → π0π+π− Dalitz plot [128] can merely
set

Λ ∼
(
v

|g2|
Λχ
)1/4

> 13GeV (5.21)

as the lower limit on the BSM scale Λ.29 This result depends of course strongly on the
validity of NDA, but should give a reasonable approximation for the order of magnitude.
If we were to estimate a more realistic limit on Λ, i.e., a value in the TeV range, one
should expect an increase by a factor of 102 (staying in the framework of naive dimensional
analysis). Hence, to set a reasonable limit on Λ, let us take for instance Λ ∼ 1TeV, the
charge asymmetry in the η → π0π+π− Dalitz-plot distribution, which is proportional to
g2, has to be roughly 108 times smaller than the current value of ref. [128], which can be
readily obtained from eq. (5.21):30

|g2| ∼
v

Λ4 Λχ ≈ 3 · 10−4 TeV2/Λ4 . (5.22)

We now turn the focus on the decay amplitude η′ → π0π+π− that can be computed
with the same Lagrangian of eq. (4.9) and reads

M 6C = i
v

Λ4F 4
0
Nη′→3π(t− u) , (5.23)

where Nη′→3π = Nη→3π/
√

2. Hence, the C- and CP -violating contributions to the decays
η → π0π+π− and η′ → π0π+π− are maximally correlated at leading order in large-Nc.
They merely differ by their available phase space and an overall factor

√
2. Unfortunately,

the current data situation [131] does not allow for a rigorous regression to the respective
Dalitz-plot distribution, cf. ref. [121]. Therefore we can at this point not cross-check the
limit on g2 set above.

5.2 η′ → ηπ+π−

In this section we focus on another interference of SM contributions and ToPe forces. The
decay η′ → ηπ+π− is driven by a transition of total isospin I = 1 and is at leading order of
the form

M 6C1 (s, t, u) = ig1(t− u) , (5.24)

29Note that NDA does not fix the sign of the normalization Nη→3π. In order to pick the correct sign of
the latter and thereby ensure that Λ ∈ R we take the absolute value of g2.

30Similarly, the more suppressed isoscalar coupling would have to take a value g0 ∼ Λ4
χg2 as demanded

by NDA.
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with the same reasoning as for η(′) → π0π+π−. A result for the isovector coupling g1
(within the scope of current experimental precision) can again be found in ref. [121]. In the
following we use the same kinematics as in the previous chapter but replace p0 → Pη and
Pη(′) → Pη′ .

There is no leading-order contribution from eq. (4.9) that does not vanish after partial
integration. Non-vanishing contributions could be generated at subleading order in δ, i.e.,
in the Nc counting; at higher orders in the chiral expansion, which, given that we look for
the exact energy dependence of eq. (5.24), would amount to quark-mass suppression; or
via isospin-breaking mixing of π0 and η(′), surely the smallest and most negligible effect.
We thus consider operators at O(δ1) but with O(p2) and use the freedom of the large-Nc

expansion to include the η′ via the chiral singlet (ϕ+ θ). Henceforth we will directly drop
the contribution of θ entering this chiral building block. Note that ϕ includes a linear
combination of η and η′. There are only a couple of operators that generate the desired
transition at the given order, as for instance

X̄
(a)
ψχ ⊃

v

Λ4 c
(a)
ψχḡ

(a)
5 · ϕ 〈(λŪ †λR∂µŪ∂µŪ † − λ†ŪλL∂µŪ †∂µŪ)+ h.c.

〉
, (5.25)

which gives rise to

∑
ψ,χ

X̄
(a)
ψχ ⊃ i

v

Λ4F 4
0

2Nη′→ηππ η′∂µη(π+∂µπ
− − π−∂µπ+) . (5.26)

The normalization of this operator is

Nη′→ηππ = 4
√

2
3
(
c(a)
uu − c(a)

ud + c
(a)
du − c

(a)
dd

)
ḡ

(a)
5 . (5.27)

We note that every other operator able to generate η′ → ηπ+π− at O(p2), which can be
obtained by letting one of the two derivatives in eq. (5.25) act on another chiral buildung
block, can analytically be written in this form and absorbed by a shift in the normalization.
The respective matrix element reads

M 6C1 = i
v

Λ4F 4
0

2Nη′→ηππ Pη(p− − p+) = i
v

Λ4F 4
0
Nη′→ηππ(t− u) . (5.28)

With the NDA prediction Nη′→ηππ ∼ ΛχF
4
0 , this result can be compared to the isovector

coupling g1 = 0.7(1.0)GeV−2 of ref. [121]. This reveals that the current experimental limit
on the Dalitz-plot asymmetries [132] constrains the new-physics scale roughly as

Λ ∼
(
v

g1
Λχ
)1/4

> 4GeV , (5.29)

where we applied the central value of g1. A scale Λ ∼ 1TeV could be tested if the experiment
restricted the isovector coupling g1 and thus the corresponding mirror asymmetry to a value
that is approximately 10−8 times the current value.
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5.3 η(′) → π0γ∗ and η′ → ηγ∗

In this section we consider the simplest C-violating decays of the η(′) into an odd number of
photons. To shorten the notation we will refer to η(′) → π0γ∗ and η′ → ηγ∗ by X → Y γ∗

and ignore the decay into a real photon, as it has to either violate gauge invariance or does
not preserve angular momentum [70, 133]. The latter enforces a relative P -wave between
the pion and photon, which moreover demands that parity is conserved and hence CP is
violated. Already in the 1960s it was proposed that the Lagrangian driving the η → π0γ∗

transition starts at chiral order p4 [134], by means of

Lη→π0γ∗ ∝ ∂µη ∂νπ0Fµν +O(p6) . (5.30)

This manifestation of gauge invariance was also applied in the SM contributions to kaon
decays [135, 136] and holds similarly for all processes X → Y γ∗ with pseudoscalars X, Y .

Without deriving the full set of mesonic operators for X̄(a)
ψχ at next-to-leading order, we

just give one example of how this operator contributes to X → Y γ∗. As similarly argued
in section 3.4.2, a single-trace operator with the correct discrete symmetries that includes
both derivatives vanishes due to the antisymmetry of Fµν . Therefore we have to increase
the order of δ by either using ∂µϕ, i.e., the derivative of the chiral singlet, or simply writing
down a double-trace operator. To recover the form of eq. (5.30) we stick to the latter
strategy and obtain

X̄
(a)
ψχ ⊃

v

Λ4 c
(a)
ψχḡ

(a)
6
〈(
λfµνL ∂µŪ

† − λ†fµνR ∂µŪ
)− h.c.

〉〈
λL∂νŪ

†Ū − λR∂νŪ Ū †
〉

(5.31)

at O(δ2), yielding ∑
ψ,χ

X̄
(a)
ψχ ⊃ e

v

Λ4F 2
0
NX→Y γ∗∂µX ∂νY F

µν ≡ LX→Y γ∗ , (5.32)

with
Nη→π0γ∗ = ḡ

(a)
6

8
3

√
2
3
(
− 4c(a)

ud + 2c(a)
us − 2c(a)

du + c
(a)
ds + c(a)

su − c(a)
sd

)
,

Nη′→π0γ∗ = −ḡ(a)
6

16
3
√

3

(
2c(a)
ud + 2c(a)

us + c
(a)
du + c

(a)
ds + c(a)

su − c(a)
sd

)
,

Nη′→ηγ∗ = ḡ
(a)
6

8
√

2
3
(
− 2c(a)

us + c
(a)
ds − c(a)

su − c(a)
sd

)
.

(5.33)

One has to keep in mind that each of our LEFT operators, once taken to O(δ2), may in
principle also contribute at the same order of magnitude as X̄(a)

ψχ . But again, the full set
of NLO expression derived from all C- and CP -violating LEFT operators is beyond the
scope of this work. However, we already proved at this point that the decays at hand
provide orthogonal probes of ToPe forces as their normalizations in eq. (5.33) are linearly
independent.

Still, we would like to comment on the contribution of the second original dimension-7
LEFT operator from eq. (2.10), i.e., the bilinear O(b)

ψ . We note that the leading-order
contribution of the latter in the SU(3) case does not contribute to the desired decays of
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order p4. However, we can still consider the U(3) version of this operator by including ϕ
using

X̄
(b)
ψ ⊃ i

v

Λ4 c
(b)
ψ ḡ

(b)
2 (∂µϕ)

〈
λ∂νŪ

† − λ†∂νŪ
〉
Fµν , (5.34)

which involves only one trace and is therefore of the order O(δ2) and O(p4).
We continue with LX→Y γ∗ from eq. (5.32) and consider the decay of the virtual photon

in section 5.4 to extract physical observables. To this end, we quote the normalization
according to NDA as similarly derived in section 5.1.2, i.e., NX→Y γ∗ ∼ F 4

0 /Λχ, and remark
that any other leading-order contribution derived from O(a)

ψχ just leads to additional linear
combinations of LECs and Wilson coefficients, which can be absorbed by a redefinition of
NX→Y γ∗ but do not affect the naive power counting. For further calculations it is convenient
to describe the decay X → Y γ∗ in terms of a singularity-free electromagnetic transition
form factor FXY (s). Using Poincaré invariance and current conservation, the amplitude
can be decomposed as [136, 137]

〈Y (p)|Jemµ (0)|X(P )〉 = −i
[
s(P + p)µ − (P 2 − p2)qµ

]
FXY (s), (5.35)

with electromagnetic current Jemµ , qµ = (P − p)µ, and s = q2.

5.4 η(′) → π0`+`− and η′ → η`+`−

The framework presented in this paper allows us to consider the decays η(′) → π0`+`− and
η′ → η`+`− (abbreviated with X → Y `+`−) in two ways: we can either compute the decay
chain X → Y γ∗ → Y `+`− or even directly access it as a point interaction originating from
semi-leptonic operators. Note that in the decay chain the photon pole 1/q2 cancels against
a necessary q2 term in the numerator if the coupling to `+`− respects gauge invariance. As
a consequence, the single-photon and the direct amplitude cannot be separated by searching
for a photon pole [134, 137, 138]. Note that within the SM, these decays can be generated
via two-photon intermediate states [139–141].

The operator from eq. (5.32) coupling to a conserved lepton current gives a dominant
contribution to X → Y `+`− if the underlying C- and CP -violating mechanism is driven
by a one-photon exchange. The only semi-leptonic operator at order δ0 is the one from
eq. (4.9), which does not generate the desired transition. Instead of deriving the full set
of operators at O(δ) for all six semi-leptonic LEFT sources, we can easily discard most of
them with the following considerations. First of all, the photonic semi-leptonic operators
are obviously not involved at lowest order in α as we have no photon in the initial or final
state. Moreover, operators including a pseudoscalar or axialvector lepton bilinear must
couple to an hadronic operator that is P -odd to preserve parity. On the hadronic level, a
P -odd operator that involves an even number of pseudoscalars (in our case η(′), π0) requires
a contraction with the Levi-Civita symbol, as explained in more detail Section 5.5. The
only Lorentz structure left that can contract with the ε-tensor includes three derivatives,
which have to act on different U (†) to generate a non-vanishing operator. However, this
goes along with an interaction containing at least three pseudoscalars. Hence, the only
LEFT operator that can contribute to X → Y `+`− at lowest order is the one involving the
P -even lepton bilinear, i.e., O(u)

`ψ . Using partial integration and the Dirac equation for the
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leptons, one can pin down the requested leading-order semi-leptonic four-point interaction
to only one operator at O(δ) and O(p2):

X̄
(u)
`ψ ⊃

c
(u)
`ψ

Λ4 ḡ
(u)
1 iϕ

〈
λL∂µŪ

†Ū − λR∂µŪ Ū †
〉¯̀γµ` . (5.36)

This chiral operator gives rise to an expression of the form

(X∂µY )¯̀γµ` . (5.37)

For now we continue with the one-photon exchange driven by the LEFT operator O(a)
ψχ in

focus of this chapter and define the corresponding T -matrix element as

〈Y (p)`+(p`+)`−(p`−)|iT |X(P )〉 ≡ (2π)4δ(4)(P − p− p`+ − p`−)iM(s, t, u) , (5.38)

where the amplitudeM depends on the three Mandelstam variables

s = (P − p)2 , t` = (P − p`+)2 , u` = (P − p`−)2 , (5.39)

which obey s + t + u = M2
X + M2

Y + 2m2
` . Starting from eq. (5.32) we allow the photon

with momentum q ≡ p`+ + p`− to decay into a lepton pair, so that the amplitude becomes

iM(s, t, u) = v

Λ4F 2
0
e2NX→Y γ∗

1
s

(Pµpν − Pνpµ)qµ ūr(p`−)γνvr′(p`+)

= v

Λ4F 2
0
e2NX→Y γ∗ Pν ūr(p`−)γνvr′(p`+)

= e2(P + p)νFXY (s) ūr(p`−)γνvr′(p`+) .

(5.40)

In the second line we simplified the expression using q2 = s and the fact that qν con-
tracted with the lepton current vanishes as demanded by the Dirac equation. As a
consistency check, we expressed the amplitude in terms of the transition form factor
FXY (s) = vNX→Y γ∗/(2eΛ4F 2

0 ) from eq. (5.35). We observe that the form factor is a
constant at leading chiral order, which meets our expectations. Note that the second line
in eq. (5.40), which comes from a LEFT operator of dimension 7, gives the same structure
as the chiral operator (5.36), which comes from an LEFT operator of dimension 8.

In analogy to ref. [142], the doubly differential decay width reads

dΓX→Y `+`−
ds dτ =

(
v

Λ4F 2
0

)2 α2

64πM3
X

N 2
X→Y γ∗

(
λ(s,M2

X ,M
2
Y )− τ2

)
, (5.41)

with the electromagnetic fine structure constant α = e2/4π, the Källén function λ(x, y, z) =
x2 +y2 +z2−2(xy+xz+yz), and the Lorentz invariant τ = t`−u`. An analytic integration
over τ yields

dΓX→Y `+`−
ds =

(
v

Λ4F 2
0

)2 α2

32πM3
X

N 2
X→Y γ∗ λ

3/2(s,M2
X ,M

2
Y )σ`(s)

(
1− σ2

` (s)
3

)
, (5.42)

where σ`(s) =
√

1− 4m2
`/s and the physical range is restricted to 4m2

` ≤ s ≤ (MX −MY )2.
After an additional numeric integration over s we can investigate how rigorously the bounds
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on the new-physics scale Λ can be placed with measurements of the electronic and muonic
decay channels. With the shorthand notation

Λ̃X→Y `+`− ≡
v2

F 4
0 ΓX→Y `+`−

α2

32πM3
X

N 2
X→Y γ∗ · 10−2GeV8 (5.43)

we obtain the limits

Λ ∼ (0.087 Λ̃η→π0e+e−)1/8 > 2.3GeV , Λ ∼ (0.027 Λ̃η→π0µ+µ−)1/8 > 2.1GeV ,

Λ ∼ (10.1 Λ̃η′→π0e+e− )1/8 > 3.5GeV , Λ ∼ (7.4 Λ̃η′→π0µ+µ− )1/8 > 3.5GeV ,

Λ ∼ (1.0 Λ̃η′→ηe+e− )1/8 > 0.7GeV , Λ ∼ (0.3 Λ̃η′→ηµ+µ− )1/8 > 1.1GeV ,

(5.44)

where we applied the NDA estimate Nη→π0γ∗ ∼ F 4
0 /Λχ, used Mη = 547.86MeV, Mπ0 =

134.98MeV, me = 0.51MeV, mµ = 105.67MeV [81], neglected their errors with respect to
the dominating uncertainty from NDA, and inserted the branching ratios from table 2.

We can again reverse this argument, i.e., the semi-leptonic branching ratios in explicit
dependence of Λ read

BRη→π0e+e− ∼ 7 · 10−27 TeV8/Λ8 , BRη→π0µ+µ− ∼ 2 · 10−27 TeV8/Λ8 ,

BRη′→π0e+e− ∼ 9 · 10−28 TeV8/Λ8 , BRη′→π0µ+µ− ∼ 6 · 10−28 TeV8/Λ8 ,

BRη′→ηe+e− ∼ 9 · 10−29 TeV8/Λ8 , BRη′→ηµ+µ− ∼ 3 · 10−29 TeV8/Λ8 ,

(5.45)

respectively.31 At this point we once more underline that these estimates are only valid
for the mechanism X → Y γ∗ → Y `+`− driven by O(a)

ψχ. A more thorough investigation of
X → Y `+`− including the remaining LEFT sources, semi-leptonic four-point interactions,
as well as hadronic contributions to the X → Y γ∗ form factor is left for future work.

5.5 η(′) → π+π−γ

While the SM contribution to the anomalous decay η(′) → π+π−γ is well known and has
been studied extensively in particular using dispersion-theoretical approaches [143–148],
the considerations of C violation in η → π+π−γ date back to the 1960s [137, 149] and
1970s [116–118]. Let us define the respective matrix element by

〈π+(p+)π−(p−)γ(q)|iT |η(′)(P )〉 = (2π)4δ(4)(P − p+ − p− − q)iMc(s, tc, uc) , (5.46)

with Mandelstam variables

s = (P − q)2 , tc = (P − p+)2 , uc = (P − p−)2 (5.47)

obeying s+ tc + uc = M2
η(′) + 2M2

π . Unless otherwise stated, we work in the isospin limit.
We begin our discussion by relaxing the constraint of C-invariance and split the amplitude
according to

iMc(s, tc, uc) ≡MC
c (s, tc, uc) +M 6Cc (s, tc, uc) . (5.48)

31Note that, here and henceforth, we use the total decay width Γη′ = 0.23MeV indicated as PDG average
in ref. [81].
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The SM contribution MC
c (s, tc, uc) is, at leading order, given by the Wess-Zumino-

Witten (WZW) term [150, 151] and can be described by

MC
c (s, tc, uc) = iεαβµνε

∗αqβpµ+p
ν
−F

C
c (s, tc, uc) . (5.49)

The invariant function FCc can be expanded in terms of pion-pion partial waves according
to [152]

FCc (s, tc, uc) =
∑
`

P ′`(zs)f`(s) , zs =
s(t− u) + (M2

1 −M2
2 )M2

η(′)

λ1/2(s,M2
1 ,M

2
2 )(M2

η(′) − s)
, (5.50)

where zs is the cosine of the scattering angle, P ′`(zs) refers to the first derivatives of the
Legendre polynomials, and for convenience and later use we keep the dependence on the
masses of the two mesons in the final state explicit. For the application at hand we can
simply set M1 = M2 = Mπ. For the C-even SM amplitude, only partial waves of odd `

contribute. Accounting for s-channel final-state rescattering and restricting the calculation
to the dominant P -wave, the scalar function FCc becomes

FCc (s, tc, uc) = P (s) Ω(s) , Ω(s) = exp
(
s

π

∫ ∞
4M2

π

dx δ(x)
x(x− s)

)
, (5.51)

where Ω(s) is the Omnès function [153], δ(s) is the ππ P-wave phase shift, for which we
employ the parameterization of ref. [154], and P (s) is a real-valued subtraction polynomial,
for which we employ P (s) = 5.09/GeV3(1 + 2.40s/GeV2−2.42s2/GeV4) for the decay of the
η and P (s) = 5.05/GeV3(1 + 0.99s/GeV2 − 0.55s2/GeV4) for the η′ [155]. For our purposes
we can neglect all parameter uncertainties, left-hand cuts, and higher partial waves.

In contrast, we only work at leading order for the χPT analog of the C-violating
contributionM 6Cc (s, tc, uc), which was found in ref. [149] to be O(p6). It is commonly known
that an interaction with an odd number of pseudoscalars requires an ε-tensor to render the
Lagrangian invariant under parity.32 Thus we naively start at O(p4) like the WZW term.
To furthermore violate C the dipion system must have an even orbital angular momentum
l. Hence, when interchanging the pions, we find |π+π−〉 = (−1)l|π−π+〉 = |π−π+〉. Finally
demanding Bose statistics, i.e., symmetrizing under interchange of the pions, the amplitude
at O(p4) vanishes due to contraction with the ε-tensor. Thus we need to equip the matrix
element by another momentum configuration that is antisymmetric under π+ ↔ π−, which
leads to

M 6Cc (s, tc, uc) ∼ εαβµνε∗αqβpµ+pν−qρ(pρ− − pρ+) (5.52)

in consistency with ref. [149]. Note that this matrix element also differs from the WZW
term by a relative factor i, ensuring T violation and hence CPT -invariance. For better

32This statement is also manifest in the construction of chirally invariant traces: a parity-violating
trace, i.e., a trace with a relative minus sign between its parity transformed as for instance

〈
λŪ† − λ†Ū

〉
,

always includes an odd number of pseudoscalars according to eq. (3.7). The only freedom we have in the
construction of χPT operators to restore parity invariance without flipping this relative sign or multiplying
other parity-violating traces (which both lead to an overall even number of pseudoscalars) is the inclusion of
an ε-tensor. We remark that this argument does not hold for semi-leptonic interactions, as the multiplication
with a parity-flipping lepton current or density does not change the number of mesons.
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comparability of eq. (5.52) with the SM amplitude in eq. (5.49), we can also define a scalar
function in the C-violating case, i.e.,

F 6Cc (s, tc, uc) ≡ qρ(pρ− − pρ+) + . . . = (tc − uc)/2 + . . . , (5.53)

where the ellipsis denotes higher-order terms in the chiral expansion. Comparing to eq. (5.50),
we see that the amplitude (5.53) indeed corresponds to the leading C-odd partial wave, a
D-wave.

We now wish to reconstruct eq. (5.52) with ToPeχPT and again pick one arbitrary
operator that may generate this matrix element at lowest order. One contribution at O(δ2)
originates from

X̄
(a)
ψχ ⊃ i

v

Λ4 c
(a)
ψχḡ

(a)
7 εαβµν

〈(
λλL∂

νŪ †∂ρf
αβ
R ∂µŪ∂ρŪ † − λ†λR∂νŪ∂ρfαβL ∂µŪ †∂ρŪ

)− h.c.
〉
.

(5.54)
If we only consider contributions to η → π+π−γ, use partial integration, and make use of
the amplitude’s symmetry, this operator evaluates to the compact expression∑

ψ,χ

X̄
(a)
ψχ ⊃ e

v

Λ4F 3
0
Nη(′)→π+π−γ εαβµν η

(′)(∂νπ+∂ρ∂µπ− + ∂νπ−∂ρ∂µπ+)∂ρFαβ . (5.55)

The constants

Nη→π+π−γ =
√

2Nη′→π+π−γ , Nη′→π+π−γ ≡ −
4√
3
ḡ

(a)
7
(
c(a)
uu − c(a)

dd

)
(5.56)

serve as the normalizations. We cannot claim at hand of this single example that η → π+π−γ
and η′ → π+π−γ are maximally correlated. From this operator we can compute the matrix
element

M 6Cc (s, tc, uc) = e
v

Λ4F 3
0
Nη(′)→π+π−γ εαβµν ε

∗αqβpµ+p
ν
−(tc − uc) (5.57)

in consistency with the previous considerations. The respective NDA estimate yields
Nη(′)→π+π−γ ∼ F 4

0 /Λ3
χ.

The interference of the SM and BSM amplitudesMC
c andM 6Cc gives rise to an asymmetry

in the distribution of charged pion momenta. To quantify this so-called left-right asymmetry,
we introduce the ratio

ALR ≡
Γ(tc > uc)− Γ(uc > tc)

Γη(′)→π+π−γ

, (5.58)

where the Γ denote the phase space integrals over |Mc(s, tc, uc)|2 for tc > uc, uc > tc, and
the full range, respectively. These integrals are explicitly defined by

Γ =
∫ M2

η(′)

4M2
π

dsΓ0(s)
∫ zmax

s

zmin
s

dzs (1− z2
s ) |iFCc (s, tc, uc) + F 6Cc (s, tc, uc)|2 , (5.59)

with

Γ0(s) ≡
(M2

η(′) − s)3λ3/2(s,M2
1 ,M

2
2 )

16(8πMη(′))3s2 , (5.60)

again keeping the final-state masses M1 and M2 general for generalization in the coming
sections. The limits of the angular integration zmin

s , zmax
s are fixed by 0 ≤ zs ≤ 1 for
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Γ(tc > uc), −1 ≤ zs ≤ 0 for Γ(uc > tc), and −1 ≤ zs ≤ 1 for Γη(′)→π+π−γ . Note that only
the contribution of the interference term, i.e.,

2Re
[
iFCc (s, tc, uc)

(
F 6Cc (s, tc, uc)

)∗]
⊂
∣∣∣iFCc (s, tc, uc) + F 6Cc (s, tc, uc)

∣∣∣2 , (5.61)

survives in the numerator of ALR, while the denominator is dominated by the SM part.
We can now express F 6Cc (s, tc, uc) in terms of zs and carry out the dzs integral analytically,
yielding

Γ(tc > uc)− Γ(uc > tc) = −e vNη→π+π−γ

2Λ4F 3
0

∫ M2
η

4M2
π

dsΓ0(s)σ(s)
(
M2
η(′) − s

)
P (s)Im (Ω(s)) .

(5.62)
The last factor demonstrates a crucial aspect about the C-odd asymmetry: due to the
relative factor of i between C-conserving and C-violating amplitude, their interference
would actually vanish, were it not for strong rescattering phases. For the two different
decays of the η and η′ we obtain

Γ(tc > uc)− Γ(uc > tc)
∣∣
η→π+π−γ

= −6.6 · 10−12 GeV6 × e v

Λ4F 3
0
Nη→π+π−γ ,

Γ(tc > uc)− Γ(uc > tc)
∣∣
η′→π+π−γ

= −1.5 · 10−7 GeV6 × e v

Λ4F 3
0
Nη′→π+π−γ ,

(5.63)

respectively. The polynomial P (s) is already normalized such that the integral over the
full decay range reproduces the experimental decay width, i.e., Γη→π+π−γ ≈ 55 eV and
Γη′→π+π−γ ≈ 56 keV, respectively. Finally, the lower bound on the new-physics scale as a
function of ALR = 0.009(4) [81] for the decay of the η and ALR = 0.03(4) [81] for the η′
under the abovementioned NDA approximation becomes

Λ|η→π+π−γ ∼
(

1.2 · 10−4 GeV5 e
v

ALRΛ3
χ

F0

)1/4

> 0.5GeV ,

Λ|η′→π+π−γ ∼
(

1 · 10−7 GeV5 e
v

ALRΛ3
χ

F0

)1/4

> 0.8GeV .

(5.64)

Both results were computed with the central values of the empirical asymmetries. In terms
of the BSM scale, the left-right asymmetries become

|ALR|η→π+π−γ ∼ 5 · 10−16 TeV4/Λ4 ,

|ALR|η′→π+π−γ ∼ 1 · 10−14 TeV4/Λ4 ,
(5.65)

respectively. The significantly larger asymmetry in the η′ decay is mainly due to the fact
that the phase space covers the whole region of the ρ(770) resonance in the π+π− invariant
mass, with its associated phase motion and peaking imaginary part. — In principle, the
D-wave phase motion of the C-violating amplitude would induce another contribution to
the asymmetry, which we have neglected in the above. However, this is strongly suppressed
relative to the P -wave in the near-threshold region covered in the η decay, staying well
below 1◦, while it rises only up to about 10◦ at the η′ mass [154], where it competes with
the resonating P -wave. Neither effect is relevant at the present level of accuracy.
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5.6 η(′) → π0π0γ

In full analogy to the charged π+π−γ final state from the previous section, we will investigate
C violation via the neutral one η → π0π0γ, as was suggested by refs. [156, 157], and
furthermore extend the analysis straightforwardly to η′ → π0π0γ. The T -matrix element

〈π0(p1)π0(p2)γ(q)|iT |η(′)(P )〉 = (2π)4δ(4)(P − p1 − p2 − q)iMn(s, tn, un) (5.66)

is described by the Mandelstam variables

s = (P − q)2 , tn = (P − p1)2 , un = (P − p2)2 , (5.67)

fulfilling the relation s + tn + un = M2
η + 2M2

π0 . The matrix element Mn has the same
structure as given in eq. (5.52). The ToPeχPT operator from eq. (5.54) we found in the
charged channel is not able to generate non-vanishing contributions to the uncharged one.
This is rooted in the fact that all interactions in which no charged mesons participate
are located in the diagonal entries of matrices Ū (†). Hence, any product of the latter
commutes with the spurions and fµνL,R upon setting all charged mesons to zero. This fact
rules out single-trace operators at O(δ2) derived from X̄

(a)
ψχ . Thus we once more consider a

double-trace operator (although the chiral singlet ∂µϕ multiplied with a single trace might
work as well), so that the lowest-order operator we find occurs at O(δ3) and reads33

X̄
(a)
ψχ = i

v

Λ4 c
(a)
ψχḡ

(a)
8 εαβµν

〈
Ū∂γ∂µŪ †+ Ū †∂γ∂µŪ

〉〈(
λλL∂γf

αβ
L ∂νŪ †−λ†λR∂γfαβR ∂νŪ

)−h.c.
〉

(5.68)
which yields ∑

ψ,χ

X̄
(a)
ψχ ⊃ e

v

Λ4F 3
0
Nη(′)→π0π0γεαβµν η

(′)∂νπ0∂ρ∂µπ0∂ρF
αβ . (5.69)

The normalizations

Nη→π0π0γ = 16
3

√
2
3 ḡ

(a)
8
(
2c(a)
uu − c(a)

dd + c(a)
ss

)
, Nη′→π0π0γ = 16

3
√

3
ḡ

(a)
8
(
2c(a)
uu − c(a)

dd − 2c(a)
ss

)
(5.70)

show that both decays are uncorrelated. In particular, as the LECs involved differ from
the ones relevant for the π+π−γ final state studied in the previous section, we note that
the C-violating operators do not relate to pion pairs of definite isospin. Finally, the decay
amplitude of the neutral channel becomes

Mn(s, tn, un) = e
v

Λ4F 3
0
NX→Y π0γεαβµνε

∗αqβpµ1p
ν
2(tn − un) , (5.71)

where NDA presumes that Nη(′)→π0π0γ ∼ F 4
0 /Λ3

χ. As in eq. (5.53), this corresponds to a
D-wave amplitude: for two identical neutral pions, only even partial waves are allowed, the
odd ones are forbidden by Bose symmetry.

33Note we have not explicitly checked whether a contribution at lower order in δ can be derived from one
of the other numerous C- and CP -odd LEFT operators. However, the lowest possible order in soft momenta
must still be p6.
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As the decay at hand has no contribution by SM physics, the relevant observable is the
full decay width

Γη(′)→π0π0γ = 1
2

(
e

v

Λ4F 3
0
Nη(′)→π0π0γ

)2 ∫ M2
X

4M2
π0

dsΓ0(s)
∫ 1

−1
dzs (1− z2

s )(tn − un)2

= 2
15

(
e

v

Λ4F 3
0
Nη(′)→π0π0γ

)2 ∫ M2
X

4M2
π0

dsΓ0(s)
(M2

X − s)2(s− 4M2
π0)

s
,

(5.72)

where the kinematical functions can be adapted from eq. (5.60) and the additional factor
1/2 accounts for Bose symmetry as we have two identical particles in the final state. The
numeric values of the phase space integrals yield

Γη→π0π0γ =
(
e

v

Λ4F 3
0
Nη→π0π0γ

)2
× 6.4 · 10−13 GeV11 ,

Γη′→π0π0γ =
(
e

v

Λ4F 3
0
Nη′→π0π0γ

)2
× 2.5 · 10−9 GeV11 .

(5.73)

With the NDA estimate quoted above, the current experimental measurements of the decay
widths listed in table 2 set the limits

Λ ∼
(

6.4 · 10−13 GeV11

Γη→π0π0γ
αv2 F0

Λ5
χ

)1/8

> 0.6GeV , (5.74)

while no search has been performed for η′ → π0π0γ to date. For arbitrary Λ the respective
branching ratios behave as

BRη→π0π0γ ∼ 1 · 10−29 TeV8/Λ8 ,

BRη′→π0π0γ ∼ 2 · 10−28 TeV8/Λ8 .
(5.75)

This tremendous suppression is due to the Λ−8 dependence of the decay width and underlines
that decays allowing for an interference of SM and BSM amplitudes — as the charged
channel η → π+π−γ — are much more suitable to search for this kind of new physics, as
they scale with Λ−4.

5.7 η′ → ηπ0γ

In this section we focus on the decay η′ → ηπ0γ, for which no measurement has been
recorded so far. We define the corresponding matrix element via

〈η(p1)π0(p2)γ(q)|iT |η(′)(P )〉 = (2π)4δ(4)(P − p1 − p2 − q)iM(s, t, u) , (5.76)

with Mandelstam variables

s = (P − q)2 , t = (P − p1)2 , u = (P − p2)2 , (5.77)

obeying s+ t+ u = M2
η′ +M2

η +M2
π0 . At the mesonic level, the driving operator must have

the form
εαβµν η

′∂µη∂νπ0Fαβ (5.78)
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in compliance with section 5.5. Similar to the arguments given in section 5.6 we cannot
build an operator at O(δ1). The lowest order contribution we find is

X̄
(a)
ψχ = v

Λ4 c
(a)
ψχḡ

(a)
9 εαβµν ϕ

〈(
λLf

αβ
L ∂µŪ †Ū−λRfαβR ∂µŪ Ū †

)−h.c.
〉〈
λ∂νŪ †−λ†∂νŪ〉 (5.79)

at O(δ3).34 The corresponding Lagrangian
∑
ψ,χ

X̄
(a)
ψχ ⊃ e

v

Λ4F 3
0

1
2Nη′→ηπ0γ εαβµν η

′∂µη∂νπ0Fαβ , (5.80)

with normalization

Nη′→ηπ0γ = 32
√

2
9

(− c(a)
ud + c(a)

us − 2c(a)
du − c

(a)
ds + 2c(a)

su + c
(a)
sd

)
ḡ

(a)
9 , (5.81)

results in the matrix element

iM = e
v

Λ4F 3
0
Nη′→ηπ0γ εαβµν p

µ
1p

ν
2q
αεβ . (5.82)

The lower number of derivatives/momenta involved in this amplitude as compared to the
decays η(′) → π0π0γ discussed in the previous section can again be understood in terms
of the contributing leading partial waves: while all of these decays violate C and do not
allow for a SM decay amplitude as the similar ones with a π+π− pair in the final state,
there are no restrictions from Bose symmetry on the ηπ0 final state, and hence the leading
contribution (5.82) is a P -, not a D-wave; note how the ηπ P -wave combines to JPC

quantum numbers 1−+. The respective decay width can be evaluated in the same manner
as in the previous sections and becomes

Γη′→ηπ0γ =
(
e

v

Λ4F 3
0
Nη′→ηπ0γ

)2 4
3

∫ M2
η′

M2
min

dsΓ0(s) , (5.83)

with Mmin ≡Mη +Mπ0 . A numeric integration yields

Γη′→ηπ0γ =
(
e

v

Λ4F 3
0
Nη′→ηπ0γ

)2
× 1.6 · 10−9 GeV7 , (5.84)

so that the NDA estimate Nη′→ηπ0γ ∼ F 4
0 /Λχ finally results in

BRη′→ηπ0γ ∼ 2 · 10−28 TeV8/Λ8 . (5.85)

5.8 η′ → ηπ0π0γ

Another C-violating decay that has not yet been searched for is η′ → ηπ0π0γ. Let us define
the corresponding T -matrix element as

〈π0(p1)π0(p2)η(p3)γ(p4)|iT |η′(P )〉 ≡ (2π)4δ(4)(P − p1 − p2 − p3 − p4)iM(p1, p2, p3, p4) .
(5.86)

34We have not explicitly checked whether any of the remaining LEFT operators can generate η′ → ηπ0γ

at O(δ1) or O(δ2).
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On the mesonic level this decay requires an operator coupling uncharged pseudoscalars to a
photon. As the covariant derivative only couples the photon to charged mesons, the desired
operator has to include one Fµν , similar to the Lagrangian in eq. (5.30). This leaves us with

η′∂µηπ0∂νπ
0Fµν (5.87)

as the only possible assignment of derivatives that does not vanish for an on-shell photon
respecting gauge invariance, i.e., upon setting q2 = 0 and qµεµ = 0. Any operator
with a derivative acting on η′ can be brought to the same form as the one above using
partial integration.

We thus arbitrarily choose the chiral operator

X̄
(a)
ψχ ⊃

v

Λ4 c
(a)
ψχḡ

(a)
10 i(∂µϕ)

〈
(λλLfµνL ∂νŪ

† − λ†λRfµνR ∂νŪ)− h.c.
〉

(5.88)

as a contribution at lowest possible order. Only keeping non-vanishing terms, the corre-
sponding Lagrangian at O(δ2) in mesonic degrees of freedom reads

∑
ψ,χ

X̄
(a)
ψχ ⊃ e

v

Λ4F 4
0
Nη′→ηπ0π0γ η

′∂µηπ0∂νπ
0Fµν , (5.89)

with

Nη′→ηπ0π0γ ≡ −
4
√

2
9 ḡ

(a)
10
(
2c(a)
uu − c(a)

dd

)
. (5.90)

The resulting matrix element evaluates to

iM(p1, p2, p3, p4) = e
v

Λ4F 4
0
Nη′→ηπ0π0γ(pµ3 (pν1 + pν2)− pν3(pµ1 + pµ2 ))p4µε

∗
ν , (5.91)

and is related to the decay width by

Γη′→ηπ0π0γ = (2π)4 S

2M

∫
dΦ4

∑
pol.
|M(p1, p2, p3, p4)|2 . (5.92)

Here dΦ4 is the four-body phase space, M is the mass of the decaying particle, and we
explicitly accounted for a symmetry factor S. We now turn the focus on the computation
of the four-body phase space and divide the final state into the two-body subsystems, with
momenta q = p1 +p2 and k = p3 +p4. At this point we will keep the mass assignments of the
particles as general as possible in order to be able to re-use the calculation at a later stage.
Introducing s12 = q2 and s34 = k2, the absolute values of the occurring three-momenta read

|q| = λ1/2(M2, s12, s34)
2M , |p12

1 | =
λ1/2(s12,m2

1,m
2
2)

2√s12
, |p34

3 | =
λ1/2(s34,m2

3,m
2
4)

2√s34
,

(5.93)
where the additional indices 12 and 34 indicate the respective center-of-mass systems chosen
for the evaluation and q is taken in the rest frame of the decaying particle. The explicit
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expressions for the four-momenta are

p1 =
(
γ12(E12

1 + β12|p12
1 | cos θ12) , |p12

1 | sin θ12 , 0 , γ12(β12E
12
1 + |p12

1 | cos θ12)
)T

,

p2 =
(
γ12(E12

2 − β12|p12
1 | cos θ12) , −|p12

1 | sin θ12 , 0 , γ12(β12E
12
2 − |p12

1 | cos θ12)
)T

,

p3 =
(
γ34(E34

3 + β34|p34
3 | cos θ34) , −|p34

3 | sin θ34 cosφ34 , −|p34
3 | sin θ34 sinφ34 ,

γ34(−β34E
34
3 − |p34

3 | cos θ34)
)T

,

p4 =
(
γ34(E34

4 − β34|p34
3 | cos θ34) , |p34

3 | sin θ34 cosφ34 , |p34
3 | sin θ34 sinφ34 ,

γ34(−β34E
34
4 + |p34

3 | cos θ34)
)T

,

(5.94)
with Eijn =

√
m2
n + |pijn |2, β12 = |q|/Eq, β34 = |k|/Ek, E2

q = |q|2 + s12, E2
k = |k|2 + s34, and

γij = 1/
√

1− β2
ij . The four-body phase space in terms of the five independent variables

reads

dΦ4 = 1
32(2π)10ds12 ds34 dθ12 dθ34 dφ34

|q|
M

|p12
1 |√
s12

|p34
3 |√
s34

sin θ12 sin θ34 , (5.95)

where the non-trivial integration limits are

(m1 +m2)2 ≤ s12 ≤ (M −m3 −m4)2 , (m3 +m4)2 ≤ s34 ≤ (M −√s12)2 . (5.96)

For the remaining details regarding the kinematics we refer to ref. [158], while equivalent
formulations can be found in refs. [159–161].

Inserting the explicit masses of the contributing particles and applying S = 1/2, we
finally find with the NDA estimate Nη′→ηπ0π0γ ∼ F 4

0 /Λχ that the branching ratio yields

BRη′→ηπ0π0γ ∼ 4πα v2

Γη′Λ2
χΛ8 · 1 · 10−15 ≈ 2 · 10−32 TeV8/Λ8 . (5.97)

5.9 η → 3π0γ

In complete analogy to section 5.8, we can derive the transition η → 3π0γ by appropriately
replacing the four-momenta and masses of η′ and η by the ones for η and π0.35 However,
the enhanced symmetry of this process prohibits any operator whose derivatives on pion
fields contract with the field-strength tensor. Thus, we require a term with at least four
derivatives that does not lead to mass terms, as for instance

∂µη∂νπ
0∂απ

0π0∂αFµν , (5.98)

35We do not consider the decay η′ → 3π0γ here, as the increased phase space allows for an ω in the
intermediate state. As a consequence, we would expect this to rather test the C-violating vector-meson
decay ω → 3π0, analogously to how η′ → π+π−π0γ is dominated by η′ → ωγ in the Standard Model.
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which we consider as an example for this decay. The corresponding chiral Lagrangian from
X̄

(a)
ψχ at lowest order (i.e., δ3) obtains a contribution from36

X̄
(a)
ψχ ⊃

v

Λ4 c
(a)
ψχ ḡ11 i(∂µϕ)

〈
(λλL∂αfµνL ∂αŪ

†Ū∂νŪ †−λ†λR∂αfµνR ∂αŪ Ū
†∂νŪ)−h.c.

〉
, (5.99)

leading to the operator∑
ψχ

X̄
(a)
ψχ ⊃ e

v

Λ4F 4
0
Nη→3π0γ ∂µη∂νπ

0∂απ
0π0∂αFµν , (5.100)

with the normalization

Nη→3π0γ ≡ −
4
3

√
2
3 ḡ

(a)
11 (2c(a)

uu + c
(a)
dd ) . (5.101)

Accordingly, the overall matrix element becomes

iM(p1, p2, p3, p4) = e
v

Λ4F 4
0
Nη→3π0γ P

µ(pν1pα2 + pν2p
α
1 + pν1p

α
3 + pν3p

α
1 + pν2p

α
3 + pν3p

α
2
)

× p4α
(
p4µε

∗
ν − p4νε

∗
µ

)
.

(5.102)
With the same four-body phase space as in section 5.8, but with appropriately re-assigned
masses, a symmetry factor S = 1/6, the NDA prediction Nη→3π0γ ∼ F 4

0 /Λ3
χ, and the

experimental width Γη→3π0γ listed in table 2 we find the lower limit

Λ ∼
(

4πα v2

Γη→3π0γΛ6
χ

· 6 · 10−21 GeV13
)1/8

> 140MeV (5.103)

or
BRη→3π0γ ∼ 1 · 10−35 TeV8/Λ8 (5.104)

for the theoretically estimated branching ratio, respectively.

5.10 η(′) → 3γ and π0 → 3γ

In this section we investigate the CP -odd contributions of the C-violating decays η(′) → 3γ
and π0 → 3γ, which have been considered in refs. [157, 162, 163] while possible C- and
P -violating contributions through weak interactions (in the case of π0) have been discussed
in ref. [164]. For this purpose we introduce the T -matrix element

〈γ(q1)γ(q2)γ(q3)|iT |X(P )〉 = (2π)4δ(4)(P − q1 − q2 − q3)iM(s, t, u) (5.105)

with X = η′, η, π0 and define the Mandelstam variables

s = (P − q1)2 , t = (P − q2)2 , u = (P − q3)2 , (5.106)

with s + t + u = M2
X . The three-photon final state sets demanding constraints on the

amplitude. First of all, the covariant derivative only couples charged mesons to the photon,
36Again, we have not considered other LEFT operators that may contribute at order δ2.
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thus we need exactly three field-strength tensors picked from fµνL , fµνR , Fµν to generate the
3γ final state and can use ∂µ instead of Dµ. Since we have an odd number of pseudoscalars,
a Levi-Civita symbol has to be involved when contracting the Lorentz indices to respect
parity invariance. Moreover Bose statistics demands a symmetrized 3γ final state, so that
non-vanishing operators require at least four additional derivatives [162]. Finally, to obtain
a coupling with a single meson (multiple) derivatives can only act on one single Ū or Ū † at
a time. We can now pick one ToPeχPT operator that meets all these requirements (which
demand an operator starting at O(δ4)) and arbitrarily choose

X̄
(a)
ψχ ⊃

vḡ
(a)
12 c

(a)
ψχ

Λ4F0
iεµνρσ

〈
(λλLfLµν∂γf

αβ
L ∂γ∂βf

L
ρσ∂αŪ

† − λ†λRfRµν∂γfαβR ∂γ∂βf
R
ρσ∂αŪ)− h.c.

〉
,

(5.107)
giving rise to ∑

ψ,χ

X̄
(a)
ψχ ⊃ e3 v

Λ4F0
2NX→3γ ε

µνρσ∂αX(∂γFαβ)(∂γ∂βFρσ)Fµν , (5.108)

with

Nπ0→3γ = ḡ
(a)
12

2
27
(− 8c(a)

uu − c(a)
dd

)
, Nη→3γ = ḡ

(a)
12

2
27

√
2
3
(− 8c(a)

uu + c
(a)
dd − c(a)

ss

)
,

Nη′→3γ = ḡ
(a)
12

2
27
√

3
(− 8c(a)

uu + c
(a)
dd + 2c(a)

ss

)
.

(5.109)
This result is consistent with refs. [157, 162] who claimed that the only contribution to
X → 3γ arises at order p10 in soft momenta.

Although the derivation of the full set of ToPeχPT operators up to chiral order p10 is
far beyond the scope of this work, every operator that contributes to X → 3γ at this order
has to have the same functional form as in eq. (5.108), modulo partial integrations, so that
all contributions from the genuine LEFT operator O(a)

ψχ lead to the same NDA estimate.
We continue the computation of the matrix element following ref. [162] and write

∑
pol
|M(s, t,u)|2 =

(
e3 v

Λ4F0
2NX→3γ

)2
32(q1q2)(q2q3)(q3q1)

×
[
(q1q2)2 (q1q3−q2q3)2 +(q1q3)2 (q1q2−q3q2)2 +(q2q3)2 (q2q1−q3q1)2

]
=
(
e3 v

Λ4F0
NX→3γ

)2
s tu

[
u2 (t−s)2 + t2 (u−s)2 +s2 (u− t)2

]
.

(5.110)
Inserting this result in the decay width

ΓX→3γ = S

256π3M3
X

∫ M2
X

0
ds
∫ M2

X−s

0
dt
∑
pol
|M(s, t, u)|2 (5.111)

with symmetry factor S = 1/6 and carrying out the integrals over s and t analytically, we
obtain

ΓX→3γ = α3M15
X

24
1

5040

(
v

Λ4F0
NX→3γ

)2
. (5.112)
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With the NDA estimate NX→3γ ∼ Λ−3
χ (4π)−4, the experimental decay widths, cf. table 2,

and the abbreviation
Λ̃3γ ≡

1
5040

v2α3

24F 2
0 Λ6

χ(4π)8 , (5.113)

we set the following lower limits on Λ:

Λ ∼
[ M15

η′

Γη′→3γ
Λ̃3γ

]1/8
> 160MeV ,

Λ ∼
[
M15
η

Γη→3γ
Λ̃3γ

]1/8
> 120MeV ,

Λ ∼
[
M15
π0

Γπ0→3γ
Λ̃3γ

]1/8
> 40MeV .

(5.114)

Reversing the argument, the branching ratios as functions of Λ are

BRη′→3γ ∼ 3 · 10−35 TeV8/Λ8 ,

BRη→3γ ∼ 1 · 10−36 TeV8/Λ8 ,

BRπ0→3γ ∼ 2 · 10−43 TeV8/Λ8 .

(5.115)

6 Summary and outlook

In this article, we provided a complete set of fundamental neutrinoless, flavor-preserving,
lepton- and baryon-number-conserving C- and CP -odd quark-level operators in LEFT
up to and including mass dimension 8. We have verified the operators from dimension-7
LEFT that were known before, but have also tackled the issue that these operators are
chirality-violating, hence carefully taking chirality-conserving operators of mass dimension
8 into account. These may in principle be of the same numerical size as those of dimension
7, because both can arise from operators of dimension 8 of SMEFT; similar observations
were made previously for dimension-5 and -6 operators in nucleon EDM analyses. As
a consequence, as long as SMEFT is accepted as the universal starting point of our
investigation, every C- and CP -odd operator we identified is suppressed by 1/Λ4, with Λ
indicating the new-physics scale.

By matching these LEFT operators thoroughly onto χPT we established a new rigorous
and model-independent framework to access possible C- and CP -violating effects in flavor-
conserving decays of η, η′, and π0, which solely relies on the conjecture that these BSM
effects arise from phenomena at scales of yet unknown high energies, for which QCD plus
QED provide an appropriate low-energy approximation. In this context, novel 3× 3 spurion
matrices were applied to ensure the transfer of the u, d, s flavor degrees of freedom and
chirality structure of the quark bilinears from the SMEFT and/or LEFT levels to chiral
operators at the χPT level. Knowing the underlying mechanisms at the level of LEFT and
χPT, we derived mesonic operators, amplitudes, and observables for more than 20 decays
in total.
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Furthermore, we estimated that the currently most precise experiments searching for
C and CP violation in the light-meson sector can merely restrict the SMEFT scale Λ to
the few GeV range. Due to the lack of sufficient input to fix the numerous low-energy
constants and Wilson coefficients entering the effective chiral theory, these estimates are
based on naive dimensional analysis, which does not only require knowledge about the
mesonic operators (some of them were already known in the 1960s) but also about the
particular sources of these operators on the quark level.

As the central numerical results of our analysis we reversed this argument and expressed
the observable branching ratios for pure BSM processes as well as asymmetry parameters
for interferences of SM and BSM contributions in terms of the new-physics scale. While
the former scale with 1/Λ8, the interference effects are proportional to 1/Λ4 and are thus
more suitable candidates for experimental searches. Hence, the most promising of our
investigated decays to find evidence for ToPe forces are η(′) → π0π+π−, η′ → ηπ+π−, and
η(′) → π+π−γ. In addition, our estimates for the pure C-violating decays allow us to weed
out those that require significantly higher experimental precision than others.

We find that the currently most rigorous experimental limits on ToPe forces in the
light-meson sector must become more stringent by roughly a factor of 107 in order to test
this scenario for a BSM scale of Λ ∼ 1 TeV. Although these theoretical bounds cannot
be reached by experiments in the near future, the search for the decays proposed in this
work — prospectively conducted, for instance, by the REDTOP [72–74] and JEF [75–77]
collaborations — can still provide important insights to understand the sources of possible
C and CP violation. Any experimental evidence for these decays could imply, for instance,
that a simultaneous violation of C and CP violation originates from (weakly coupled)
light degrees of freedom, or that the SMEFT and/or LEFT power counting is bypassed by
another, yet unknown mechanism.

Obviously, this casts doubt at the possibility to interpret any observable C- and CP -
odd signals in terms of SMEFT. However, we can relax the constraints obtained here
to some extent by concentrating on LEFT without any reference to SMEFT at all; this
would effectively replace the TeV scale Λ by an electroweak scale of the order of 100GeV,
and therefore reduce the discrepancy between our theoretical expectation and current
experimental sensitivity by a factor of about 1/4 × 103 – 104 for interferences with SM
amplitudes and 105 – 108 for pure BSM transitions.

Our analysis opens a new window to model-independent theoretical analyses of C
and CP violation with a vast number of possible future extensions. These are not only
restricted to applications to meson scattering and decays not covered in this work, especially
to ones that include interferences of SM and BSM physics, but also to extensions to flavor-
changing transitions [41], to heavy-quark physics, to processes in the baryon or nuclear
sector [165–170], and cross-relations to EDMs [171].
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A Characterization of discrete symmetries in LEFT operators up to di-
mension 8

In this appendix we comment on our classification of C- and CP -violating LEFT operators
presented in section 2, based on the complete sets from ref. [31] up to and including mass
dimension 6, ref. [35] for dimension 7, and ref. [21] for dimension-8 operators. For simplicity
we do not quote all of the numerous contributing operators in these bases, but go directly to
their characterization in terms of C-, P -, and T -eigenstates. The genuine LEFT operators
are written in terms of chiral projectors, i.e.,

ψL/R ≡ PL/Rψ , with PL = 1− γ5
2 , PR = 1 + γ5

2 , (A.1)

and thus include in general superpositions of states with different discrete symmetries. Our
C- and CP -odd operators will be identified as linear combinations of these LEFT operators,
such that the separated (pseudo)scalar, (axial)vector, and (pseudo)tensor contributions
have definite eigenvalues under C, P , and T . Technically, we merely write each projector
explicitly in terms of Dirac matrices and separate the summands with different discrete
symmetries. We will rephrase the quark portion of each LEFT operator in this way and
drop possible field-strength tensors and SU(3) generators in the first place, which can be
restored in most cases straightforwardly.

To keep the notation as short and simple as possible we use a rather sloppy notation
and refer to generic Wilson coefficients by c ∈ C, whose numerical value may be different in
each operator. This abuse of notation shall not bother us, as we are solely interested in
LEFT and not in any matching between operators in SMEFT and LEFT. The notes on
the following pages are all restricted to the flavor-conserving case. However, flavor-violating
LEFT operators that may contribute to ToPe forces, which are less relevant for our analysis
of η decays, can be derived in a similar manner. Other than that, we will follow the strategy
already sketched in section 2.

The outline of this appendix is as follows. In section A.1 we explicitly confirm at hand
of well-known operator bases of LEFT that there are no ToPe interactions of dimension ≤ 6.
Subsequently we investigate the operators at dimension 7 and 8 LEFT in sections A.2
and A.3, respectively, and carefully distinguish between the ones that are chirality-violating
and chirality-conserving.

A.1 Dimension ≤ 6 LEFT

In this section we consider LEFT operators carefully worked out by ref. [31] and explicitly
show that there are indeed no ToPe operators below dimension 7 in LEFT. We directly
discard the dimension-3 operators, which are solely given by neutrino bilinears [31].
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A.1.1 Dimension 5 LEFT

The modest number of dimension-5 operators only allows for quarks with the sole Dirac
structure ψ̄LσµνψR. We can multiply this structure with the Wilson coefficient and respect
hermiticity, to obtain

c ψ̄σµνPRψ + h.c. = Re c ψ̄σµνψ + i Im c ψ̄σµνγ5ψ . (A.2)

After contracting with the gluon or photon field-strength tensor, we can read off from table 1
that the resulting terms preserve C.

A.1.2 Dimension 6 LEFT

In dimension 6 LEFT we encounter operators including the quadrilinear

c ψ̄γµPR/Lψχ̄γ
µPR/Lχ+ h.c. = 1

2Re c
[
ψ̄γµψχ̄γ

µχ+ ψ̄γµγ5ψχ̄γ
µγ5χ

± ψ̄γµγ5ψχ̄γ
µχ± ψ̄γµψχ̄γµγ5χ

]
.

(A.3)
While the first two summands have the signature CPT = + + +, the last two have the
eigenvalues CPT = −−+. Therefore these cannot contribute to ToPe interactions. The
same holds for ψ̄γµPLψχ̄γ

µPRχ, which just distinguishes by relative signs from the case
discussed above. Next, consider

c ψ̄PRχχ̄PRψ + h.c. = 1
2Re c

[
ψ̄χχ̄ψ + ψ̄γ5χχ̄γ5ψ

]
+ i

2 Im c
[
ψ̄γ5χχ̄ψ + ψ̄χχ̄γ5ψ

]
. (A.4)

While the summand scaling with Re c has CPT = + + + the one proportional to Im c is
CPT = +−−. Analogously, this is also true for ψ̄PLψχ̄PLχ.

Using σ†µν = γ0σµνγ0 we can easily derive

c ψ̄σµνPRχχ̄σ
µνPRψ + h.c. = 1

2Re c
[
ψ̄σµνχχ̄σ

µνψ + ψ̄σµνγ5χχ̄σ
µνγ5ψ

]
+ i

2 Im c
[
ψ̄σµνγ5χχ̄σ

µνψ + ψ̄σµνχχ̄σ
µνγ5ψ

]
,

(A.5)
where the two summands have CPT = + + + and CPT = + − −, respectively. Again,
the term ψ̄σµνPLψχ̄σ

µνPLχ proceeds in the same manner. The remaining dimension-6
operators under consideration are the triple gauge terms

fabcG
νa
µ G

ρb
ν G

µc
ρ and fabcG̃

νa
µ G

ρb
ν G

µc
ρ , (A.6)

which, according to table 1, have the symmetries CPT = + + + and CPT = + − −,
respectively.

Thus no operator in dimension-6 LEFT can create ToPe effects. Furthermore note that
one can neither build a loop consisting of two dimension-6 LEFT operators that results in
a C- and CP -odd transition.
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A.2 Dimension-7 LEFT

Considering the — for our purposes relevant — lepton- and baryon-number-conserving
operators, there occur two different types of fermion bilinears: ψ̄RψL and ψ̄RσµνψL. Let us
again neglect the (hermitian) product of field-strength tensors accompanying these bilinears
for now. Accounting for the respective Wilson coefficients, the hermitian bilinears can be
rewritten as

c ψ̄RψL + h.c. = Re c ψ̄ψ − Im c ψ̄iγ5ψ (A.7)

and

c ψ̄RσµνψL + h.c. = Re c ψ̄σµνψ − Im c ψ̄iσµνγ5ψ . (A.8)

In complete analogy, the two types of fermion quadrilinears (ψ̄LγµψL)(χ̄LiD~

~

µχR) and
(ψ̄RγµψR)(χ̄LiD~

~

µχR) become

c (ψ̄LγµψL)(χ̄LiD~

~

µχR) + h.c. = 1
2Re c

[
(χ̄iD~

~

µχ)(ψ̄γµψ)− (χ̄iD~

~

µχ)(ψ̄γµγ5ψ)
]

− 1
2 Im c

[
(χ̄D~

~

µγ5χ)(ψ̄γµψ)− (χ̄D~

~

µγ5χ)(ψ̄γµγ5ψ)
]
,

(A.9)

where in the second step PL +PR = 1 and PR −PL = γ5 were applied. Similarly, we obtain

c (ψ̄RγµψR)(χ̄LiD~
~

µχR) + h.c. = 1
2Re c

[
(χ̄iD~

~
µχ)(ψ̄γµψ) + (χ̄iD~

~
µχ)(ψ̄γµγ5ψ)

]
− 1

2 Im c
[
(χ̄D~

~

µγ5χ)(ψ̄γµψ) + (χ̄D~

~

µγ5χ)(ψ̄γµγ5ψ)
]
,

(A.10)

with the same operators as eq. (A.9), but with different real-valued prefactors. Note that
the factor i from the Wilson coefficients flips the sign of time reversal, while γ5 changes the
one of parity. Attaching the products of field-strength tensors to the fermion bilinears, like
explicitly done in table 3, we can formulate the operators of ref. [35] in a way that allows
us to directly read off the transformation properties under the discrete symmetries C, P ,
and T . According to table 3, there are only two operators at dimension 7 in LEFT which
violate C and CP , namely

ψ̄TAσµνψFµρG
Aρ
ν ,

χ̄D~

~

µγ5χψ̄γ
µγ5ψ ,

(A.11)

with the same form as already proposed decades ago, cf. eq. (1.4). There is in principle also
another color contraction for the quark quadrilinear allowed, but we refrain from quoting it
explicitly because it leads to the same effective operator on the mesonic level and in this
way we are as consistent as possible with the original operators from eq. (1.4). Furthermore,
as already stated in section 2.2.1, in this work we do not consider corrections due to QCD
running, which arise from possible mixing of different color contractions.
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C P T

1a) ψ̄ψFµνF
µν + + +

1b) ψ̄iγ5ψFµνFµν + − −
2a) ψ̄TAψFµνGAµν + + +

2b) ψ̄TAiγ5ψFµνGAµν + − −
3a) ψ̄TAσµνψFµρG

Aρ
ν − + −

3b) ψ̄TAσµνiγ5ψFµρGAρν − − +

4a) dabcψ̄T
AψGBµνG

Cµν + + +

4b) dabcψ̄T
Aiγ5ψGBµνG

Cµν + − −
5a) fabcψ̄T

AσµνψGBµρG
Cρ
ν + + +

5b) fabcψ̄T
Aσµνiγ5ψGBµρG

Cρ
ν + − −

6a) ψ̄ψFµνF̃
µν + − −

6b) ψ̄iγ5ψFµνF̃µν + + +

7a) ψ̄TAψFµνG̃Aµν + − −
7b) ψ̄TAiγ5ψFµνG̃Aµν + + +

8a) dabcψ̄T
AψGBµνG̃

Cµν + − −
8b) dabcψ̄T

Aiγ5ψGBµνG̃
Cµν + + +

9) (χ̄iD~
~

µχ)(ψ̄γµψ) + + +

10) (χ̄D~

~

µγ5χ)(ψ̄γµψ) + − −
11) (χ̄iD~

~

µχ)(ψ̄γµγ5ψ) − − +

12) (χ̄D~

~

µγ5χ)(ψ̄γµγ5ψ) − + −

Table 3. Operators in dimension 7 LEFT with well defined discrete space-time symmetries. All
operators listed are hermitian and have to be multiplied by a real-valued coefficient corresponding
to real or imaginary parts of the respective Wilson coefficients. This table covers the operators that
are not discarded beforehand, as described in section 2, and can be generalized in future analyses.
The operators 3a) and 12) are C- and CP -odd.

A.3 Dimension-8 LEFT

We proceed with the classification of dimension-8 operators from ref. [21]. For the sake of
simplicity, we categorize the operators according to the number n of contributing quarks
(ψn), derivatives (Dn), and gauge field-strength tensors (Xn). Once more, we first focus
on the Dirac structure of each operator and characterize different combinations (given in
the original basis of LEFT operators) with Xn, structure constants dabc, fabc, and SU(3)
generators T a in tables 4–12. Operators that are not listed in these tables do either not
appear in the original LEFT basis of ref. [21] or are beforehand identified as irrelevant for
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our analysis, cf. section 2. The results, i.e., chirality-conserving and -violating dimension-8
LEFT operators, are summarized in section A.3.5.

A.3.1 Operator class X4

Each field-strength tensor Xµν has the signature CPT = − + −, while the ones in dual
space, i.e., X̃µν , obey CPT = −−+. Hence any combination of four field-strength tensors
with no or trivial color contractions, i.e., contractions without structure constants fabc or
dabc, conserves C. Having a look at these non-trivial color structures, there appear either
terms including three gluons and one photon or four gluons and no photon. In the LEFT
basis under consideration the former always involve the symmetric structure constant dabc,
so that terms of the form

dabcG
a
µνG

bµνGcαβF
αβ (A.12)

are always C-even, as can be read off from table 1. The possible four-gluon operators
include structures like

dabedcdeG
a
µνG

bµνGcαβG
dαβ , (A.13)

which conserve each of the three fundamental discrete symmetries separately. This can
easily be checked analogously to the example given in section 2.1. The exchange of any of
these field-strength tensors with its dual representation preserves the C-even nature of the
operators. Thus there is no C-violating operator in this class.

A.3.2 Operator class ψ2X2D

In this operator class we encounter

c ψ̄γµiD~

~

νPR/Lψ + h.c. = Re c
(
ψ̄γµiD~

~

νψ ± ψ̄γµγ5iD~

~

νψ
)
. (A.14)

Taking appropriate linear combinations, these Dirac structures can be reduced to

ψ̄γµiD~

~

νψ and ψ̄γµγ5iD~

~

νψ , (A.15)

which have to be multiplied with a real-valued linear combination of Wilson coefficients
that can be absorbed in a single overall normalization for each of these two operators. All
combinations with attached field strengths are listed in table 4.

A.3.3 Operator class ψ4X

The simplest quadrilinears occurring in the class ψ4X read

c ψ̄γµPLψχ̄γ
νPRχ+ h.c. = 1

2Re c
(
ψ̄γµψχ̄γνχ− ψ̄γµγ5ψχ̄γ

νγ5χ

− ψ̄γµγ5ψχ̄γ
νχ+ ψ̄γµψχ̄γνγ5χ

) (A.16)

and

c ψ̄γµPR/Lψχ̄γ
νPR/Lχ+ h.c. = 1

2Re c
(
ψ̄γµψχ̄γνχ+ ψ̄γµγ5ψχ̄γ

νγ5χ

± ψ̄γµγ5ψχ̄γ
νχ± ψ̄γµψχ̄γνγ5χ

)
.

(A.17)
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Note that the expression ψ̄γµPLψχ̄γ
νPRχ is (up to a sign) the same as ψ̄γµPRψχ̄γ

νPLχ

after a contraction with the field-strength tensor and a re-labelling ψ ↔ χ. Therefore it
suffices to consider only one of them. In analogy to eq. (A.15) we can write these operators
as linearly independent combinations with the same eigenvalue of C by means of

ψ̄γµψχ̄γνχ± ψ̄γµγ5ψχ̄γ
νγ5χ and ψ̄γµγ5ψχ̄γ

νχ± ψ̄γµψχ̄γνγ5χ . (A.18)

After contracting with Fµν or Gaµν and attaching the respective color structures, the discrete
symmetries of these operators can be read off straightforwardly.

Next, we have a look at

c ψ̄γµPLχχ̄γ
νPRψ + h.c. = Re c

(
ψ̄γµPLχχ̄γ

νPRψ + ψ̄γνPRχχ̄γ
µPLψ

)
+ i Im c

(
ψ̄γµPLχχ̄γ

νPRψ − ψ̄γνPRχχ̄γ
µPLψ

)
.

(A.19)

To simplify the expression after expanding the projectors, we need to contract the operator
with the field-strength tensors. The antisymmetry of Fµν under interchange of the Lorentz
indices leads to

(
c ψ̄γµPLχχ̄γ

νPRψ + h.c.
)
Fµν = 1

2Re c
(
ψ̄γµχχ̄γνγ5ψ − ψ̄γµγ5χχ̄γ

νψ
)
Fµν

+ i

2 Im c
(
ψ̄γµχχ̄γνψ − ψ̄γµγ5χχ̄γ

νγ5ψ
)
Fµν .

(A.20)

Special care has to be taking when working out the C-transformation of operators mixing
different flavors in a single bilinear, as is the case for the operator above. The charge
conjugate of the first summand in eq. (A.20) reads

C
[(
ψ̄γµχχ̄γνγ5ψ − ψ̄γµγ5χχ̄γ

νψ
)
Fµν

]
=
(
ψ̄γνγ5χχ̄γ

µψ − ψ̄γνχχ̄γµγ5ψ
)
Fµν

=
(− ψ̄γµγ5χχ̄γ

νψ + ψ̄γµχχ̄γνγ5ψ
)
Fµν ,

(A.21)

where, in the last step, we renamed µ↔ ν and again used the antisymmetry of Fµν . For
the second summand one can proceed analogously. Hence the operator in eq. (A.20) is
C-even. The case when contracting the quadrilinear with Gaµν instead of Fµν is slightly
more intricate, as we need to account for the SU(3) color generator T a:

c ψ̄γµPLT
aχχ̄γνPRψG

a
µν + h.c. =

1
4Re c

[
ψ̄γµT aχχ̄γνψ + ψ̄γµT aχχ̄γνγ5ψ − ψ̄γµγ5T

aχχ̄γνψ

− ψ̄γµγ5T
aχχ̄γνγ5ψ + (ψ ↔ χ)

]
Gaµν

+ i

4 Im c
[
ψ̄γµT aχχ̄γνψ + ψ̄γµT aχχ̄γνγ5ψ − ψ̄γµγ5T

aχχ̄γνψ

− ψ̄γµγ5T
aχχ̄γνγ5ψ − (ψ ↔ χ)

]
Gaµν .

(A.22)
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As already done several times, one can conveniently split this operator into its C-even and
C-odd eigenstates. In complete analogy, we now evaluate

c fabc ψ̄γ
µPLT

aχχ̄γνPRT
bψGcµν + h.c. =

1
2Re c fabc

[
ψ̄γµT aχχ̄γνT bψ − ψ̄γµγ5T

aχχ̄γνγ5T
bψ
]
Gcµν

+ i

2 Im c fabc
[
ψ̄γµT aχχ̄γνT bγ5ψ − ψ̄γµγ5T

aχχ̄γνT bψ
]
Gcµν ,

(A.23)

where we simplified the expression using the antisymmetry of the structure constant fabc
and Gcµν . Similarly, we find

c dabc ψ̄γ
µPLT

aχχ̄γνPRT
bψGcµν + h.c.

= 1
2Re c dabc

[
ψ̄γµT aχχ̄γνγ5T

bψ − ψ̄γµγ5T
aχχ̄γνT bψ

]
Gcµν ,

(A.24)

where terms symmetric under ψ ↔ χ drop out, because the operator is symmetric under
a↔ b and antisymmetric under µ↔ ν. We continue with

c ψ̄PRψχ̄σ
µνPRχ+ h.c. = 1

2Re c
(
ψ̄ψχ̄σµνχ+ ψ̄γ5ψχ̄σ

µνγ5χ
)

+ i

2 Im c
(
ψ̄γ5ψχ̄σ

µνχ+ ψ̄ψχ̄σµνγ5χ
)
.

(A.25)

The next quadrilinear under consideration has the form

c ψ̄PRχχ̄σ
µνPRψ + h.c.

= Re c
(
ψ̄PRχχ̄σ

µνPRψ + χ̄PLψψ̄σ
µνPLχ

)
+ iIm c

(
ψ̄PRχχ̄σ

µνPRψ − χ̄PLψψ̄σ
µνPLχ

)
= 1

4Re c
[(
ψ̄χχ̄σµνψ + χ̄ψψ̄σµνχ+ ψ̄γ5χχ̄σ

µνγ5ψ + χ̄γ5ψχ̄σ
µνγ5χ

)
+
(
ψ̄γ5χχ̄σ

µνψ + ψ̄χχ̄σµνγ5ψ − χ̄γ5ψχ̄σ
µνχ− χ̄ψψ̄σµνγ5χ

)]
+ i

4 Im c
[(
ψ̄χχ̄σµνψ − χ̄ψψ̄σµνχ+ ψ̄γ5χχ̄σ

µνγ5ψ − χ̄γ5ψχ̄σ
µνγ5χ

)
+
(
ψ̄γ5χχ̄σ

µνψ + ψ̄χχ̄σµνγ5ψ + χ̄γ5ψχ̄σ
µνχ+ χ̄ψψ̄σµνγ5χ

)]
.

(A.26)

In this equation, the terms are ordered such that each expression in parenthesis has the
same eigenvalue under charge conjugation. In the same manner, the last operator occurring
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in this class is

c ψ̄σµλPRχχ̄σ
λνPRψ + h.c.

= Re c
(
ψ̄σµλPRχχ̄σ

λνPRψ + ψ̄σµλPLχχ̄σ
λνPLψ

)
+ iIm c

(
ψ̄σµλPRχχ̄σ

λνPRψ − ψ̄σµλPLχχ̄σ
λνPLψ

)
= 1

4Re c
[(
ψ̄σµλχχ̄σ

λνψ + χ̄σµλψψ̄σ
λνχ+ ψ̄σµλγ5χχ̄σ

λνγ5ψ + χ̄σµλγ5ψχ̄σ
λνγ5χ

)
+
(
ψ̄σµλγ5χχ̄σ

λνψ + ψ̄σµλχχ̄σ
λνγ5ψ − χ̄σµλγ5ψχ̄σ

λνχ− χ̄σµλψψ̄σλνγ5χ
)]

+ i

4 Im c
[(
ψ̄σµλχχ̄σ

λνψ − χ̄σµλψψ̄σλνχ+ ψ̄σµλγ5χχ̄σ
λνγ5ψ − χ̄σµλγ5ψχ̄σ

λνγ5χ
)

+
(
ψ̄σµλγ5χχ̄σ

λνψ + ψ̄σµλχχ̄σ
λνγ5ψ + χ̄σµλγ5ψχ̄σ

λνχ+ χ̄σµλψψ̄σ
λνγ5χ

)]
.

(A.27)
Once multiplied with the field-strength tensors, many operators of this class simplify
depending on their color contractions. We list the operators presented in this section with
all allowed (non-vanishing) contractions with field-strength tensors in tables 5–8.

A.3.4 Operator class ψ4D2

The fermion multilinears in the class ψ4D2 have the simplest structure and (ignoring the
derivatives for now) either appear as quadrilinears consisting of two quark currents, i.e.,

c ψ̄γµPLψχ̄γµPRχ+ h.c. = 1
2Re c

(
ψ̄γµψχ̄γµχ− ψ̄γµγ5ψχ̄γµγ5χ

− ψ̄γµγ5ψχ̄γµχ+ ψ̄γµψχ̄γµγ5χ
)
,

(A.28)

c ψ̄γµPR/Lψχ̄γµPR/Lχ+ h.c. = 1
2Re c

(
ψ̄γµψχ̄γµχ+ ψ̄γµγ5ψχ̄γµγ5χ

± ψ̄γµγ5ψχ̄γµχ± ψ̄γµψχ̄γµγ5χ
)
,

(A.29)

and
c ψ̄γµPLχχ̄γ

µPRψ + h.c. = 1
2Re c

(
ψ̄γµχχ̄γ

µψ − ψ̄γµγ5χχ̄γ
µγ5ψ

)
+ i

2 Im c
(
ψ̄γµχχ̄γ

µγ5ψ − ψ̄γµγ5χχ̄γ
µψ
)
,

(A.30)

or as a product of two densities like

c ψ̄PRχχ̄PRψ + h.c. = 1
2Re c

(
ψ̄χχ̄ψ + ψ̄γ5χχ̄γ5ψ

)
+ i

2 Im c
(
ψ̄χχ̄γ5ψ + ψ̄γ5χχ̄ψ

) (A.31)

and

c ψ̄PRψχ̄PRχ+ h.c. = 1
2Re c

(
ψ̄ψχ̄χ+ ψ̄γ5ψχ̄γ5χ

)
+ i

2 Im c
(
ψ̄ψχ̄γ5χ+ ψ̄γ5ψχ̄χ

)
. (A.32)

These Dirac structures are categorized with all allowed combinations of derivatives in
tables 9–12.
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A.3.5 Summary of C- and CP -odd operators

For LEFT dimension-8 ToPe operators that are chirality-breaking, i.e., they do not arise at
dimension 8 in SMEFT and are hence suppressed with respect to the chirality-breaking
dimension-7 LEFT and chirality-conserving dimension-8 LEFT operators by at least one
additional inverse power of the new-physics scale Λ, we find (note that all these operators
vanish for ψ = χ)[

ψ̄γµχχ̄γνT aψ − ψ̄γµγ5χχ̄γ
νT aγ5ψ + (ψ ↔ χ)

]
Gaµν ,

i
[
ψ̄γµγ5χχ̄γ

νT aψ − ψ̄γµχχ̄γνT aγ5ψ − (ψ ↔ χ)
]
G̃aµν ,

i
[
ψ̄T aχχ̄σµνT aψ + ψ̄γ5T

aχχ̄σµνγ5T
aψ − (ψ ↔ χ)

]
Fµν ,

idabc
[
ψ̄T aχχ̄σµνT bψ + ψ̄γ5T

aχχ̄σµνγ5T
bψ − (ψ ↔ χ)

]
Gcµν ,

fabc
[
ψ̄T aχχ̄σµνT bψ + ψ̄γ5T

aχχ̄σµνγ5T
bψ + (ψ ↔ χ)

]
Gcµν .

(A.33)

The fact that these operators are indeed chirality-violating can also be understood as follows.
Quark quadrilinears in which both bilinears contain an SU(3)C generator cannot originate
from a coupling to a W -boson as described in detail in section 2.2. Although less obvious,
the same holds for the first two operators in eq. (A.33) as they both arise from quadrilinears
with the handedness ψ̄LγµχLχ̄RγνψR. Thus, all of the operators listed above are point
interactions that convert left-handed ψ and χ to respective right-handed ones.

Our results for LEFT dimension-8 ToPe operators that are chirality-conserving and a
priori not necessarily suppressed by the chirality-violating dimension-7 ToPe operators read

fabcψ̄γ
µiD~

~

νT aψGbµρG
c ρ
ν ,

ψ̄γµiD~

~

νT aγ5ψ
(
FµρG̃

a ρ
ν ± FνρG̃a ρµ

)
,(

ψ̄γµψχ̄γνχ± ψ̄γµγ5ψχ̄γ
νγ5χ

)
Fµν ,(

ψ̄γµT aψχ̄γνT aχ± ψ̄γµγ5T
aψχ̄γνγ5T

aχ
)
Fµν ,(

ψ̄γµψχ̄γνT aχ± ψ̄γµγ5ψχ̄γ
νγ5T

aχ
)
Gaµν ,

fabc
(
ψ̄γµγ5T

aψχ̄γνT bχ± ψ̄γµT aψχ̄γνγ5T
bχ
)
G̃cµν ,

dabc
(
ψ̄γµT aψχ̄γνT bχ± ψ̄γµγ5T

aψχ̄γνγ5T
bχ
)
Gcµν ,

i
[
ψ̄χχ̄σµνψ + ψ̄γ5χχ̄σ

µνγ5ψ − (ψ ↔ χ)
]
Fµν ,

i
[
ψ̄T aχχ̄σµνψ + ψ̄γ5T

aχχ̄σµνγ5ψ − (ψ ↔ χ)
]
Gaµν ,

i
[
ψ̄χχ̄σµνT aψ + ψ̄γ5χχ̄σ

µνγ5T
aψ − (ψ ↔ χ)

]
Gaµν ,[

ψ̄σλµT aχχ̄σµνψ + ψ̄σλµγ5T
aχχ̄σµνγ5ψ + (ψ ↔ χ)

]
Ga νλ ,[

ψ̄σλµχχ̄σµνT
aψ + ψ̄σλµγ5χχ̄σµνγ5T

aψ + (ψ ↔ χ)
]
Ga νλ .

(A.34)

Note that these operators are not unique, as they depend on the LEFT operator basis and
the linear combinations chosen to group respective operators together with an appropriate
redefinition of the Wilson coefficients. For example, the last two operators in eq. (A.34)
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ψ̄L/Rγ
µiD~

~

νψL/R C P T

1a) ψ̄γµiD~

~

νψ FµρF
ρ
ν + + +

1b) ψ̄γµiD~

~

νγ5ψ FµρF ρν − − +

2a) ψ̄γµiD~

~

νψGaµρG
a ρ
ν + + +

2b) ψ̄γµiD~

~

νγ5ψGaµρG
a ρ
ν − − +

3a) fabcψ̄γ
µiD~

~

νT aψGbµρG
c ρ
ν − + −

3b) fabcψ̄γ
µiD~

~

νT aγ5ψGbµρG
c ρ
ν + − −

4a) dabcψ̄γ
µiD~

~

νT aψGbµρG
c ρ
ν + + +

4b) dabcψ̄γ
µiD~

~

νT aγ5ψGbµρG
c ρ
ν − − +

5a) ψ̄γµiD~

~

νT aψ
(
FµρG

a ρ
ν ± FνρGa ρµ

)
+ + +

5b) ψ̄γµiD~

~

νT aγ5ψ
(
FµρG

a ρ
ν ± FνρGa ρµ

) − − +

6a) ψ̄γµiD~

~

νT aψ
(
FµρG̃

a ρ
ν ± FνρG̃a ρµ

)
+ − −

6b) ψ̄γµiD~

~

νT aγ5ψ
(
FµρG̃

a ρ
ν ± FνρG̃a ρµ

) − + −
7a) fabcψ̄γ

µiD~

~

νT aψ
(
GbµρG̃

c ρ
ν ± G̃bνρGc ρµ

) − − +

7b) fabcψ̄γ
µiD~

~

νT aγ5ψ
(
GbµρG̃

c ρ
ν ± G̃bνρGc ρµ

)
+ + +

Table 4. Operators of the class ψ2X2D with well defined discrete space-time symmetries. All
operators follow the description given in table 3. The operators 3a) and 6b) are C- and CP -odd.
Note that for the cases 1a) to 4b) there are no operators with the dual field-strength tensor X̃ρ

ν in
the considered LEFT basis of ref. [21].

are linearly dependent, which can be shown using the antisymmetry of σµν and Ga νλ , so
that they can be understood as only one operator with an appropriately redefined Wilson
coefficient. In a similar manner one can decompose all LEFT operators with ‘±’ into two
linearly independent operators each. Moreover, we remark that operators that only differ
(up to an overall sign) in the interchange of ψ and χ can be summarized as one operator by
adding flavor indices.
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ψ̄L/Rγ
µψL/Rχ̄L/Rγ

νχL/R & ψ̄Lγ
µψLχ̄Rγ

νχR C P T

1a)
(
ψ̄γµψχ̄γνχ± ψ̄γµγ5ψχ̄γνγ5χ

)
Fµν − + −

1b)
(
ψ̄γµγ5ψχ̄γνχ± ψ̄γµψχ̄γνγ5χ

)
Fµν + − −

2a)
(
ψ̄γµψχ̄γνχ± ψ̄γµγ5ψχ̄γνγ5χ

)
F̃µν − − +

2b)
(
ψ̄γµγ5ψχ̄γνχ± ψ̄γµψχ̄γνγ5χ

)
F̃µν + + +

3a)
(
ψ̄γµT aψχ̄γνT aχ± ψ̄γµγ5T aψχ̄γνγ5T aχ

)
Fµν − + −

3b)
(
ψ̄γµγ5T aψχ̄γνT aχ± ψ̄γµT aψχ̄γνγ5T aχ

)
Fµν + − −

4a)
(
ψ̄γµT aψχ̄γνT aχ± ψ̄γµγ5T aψχ̄γνγ5T aχ

)
F̃µν − − +

4b)
(
ψ̄γµγ5T aψχ̄γνT aχ± ψ̄γµT aψχ̄γνγ5T aχ

)
F̃µν + + +

5a)
(
ψ̄γµψχ̄γνT aχ± ψ̄γµγ5ψχ̄γνγ5T aχ

)
Gaµν − + −

5b)
(
ψ̄γµγ5ψχ̄γνT aχ± ψ̄γµψχ̄γνγ5T aχ

)
Gaµν + − −

6a)
(
ψ̄γµψχ̄γνT aχ± ψ̄γµγ5ψχ̄γνγ5T aχ

)
G̃aµν − − +

6b)
(
ψ̄γµγ5ψχ̄γνT aχ± ψ̄γµψχ̄γνγ5T aχ

)
G̃aµν + + +

7a) fabc
(
ψ̄γµT aψχ̄γνT bχ± ψ̄γµγ5T aψχ̄γνγ5T bχ

)
Gcµν + + +

7b) fabc
(
ψ̄γµγ5T aψχ̄γνT bχ± ψ̄γµT aψχ̄γνγ5T bχ

)
Gcµν − − +

8a) fabc
(
ψ̄γµT aψχ̄γνT bχ± ψ̄γµγ5T aψχ̄γνγ5T bχ

)
G̃cµν + − −

8b) fabc
(
ψ̄γµγ5T aψχ̄γνT bχ± ψ̄γµT aψχ̄γνγ5T bχ

)
G̃cµν − + −

9a) dabc
(
ψ̄γµT aψχ̄γνT bχ± ψ̄γµγ5T aψχ̄γνγ5T bχ

)
Gcµν − + −

9b) dabc
(
ψ̄γµγ5T aψχ̄γνT bχ± ψ̄γµT aψχ̄γνγ5T bχ

)
Gcµν + − −

10a) dabc
(
ψ̄γµT aψχ̄γνT bχ± ψ̄γµγ5T aψχ̄γνγ5T bχ

)
G̃cµν − − +

10b) dabc
(
ψ̄γµγ5T aψχ̄γνT bχ± ψ̄γµT aψχ̄γνγ5T bχ

)
G̃cµν + + +

Table 5. Operators of the class ψ4X with well defined discrete space-time symmetries. All operators
follow the description given in table 3. The operators 1a), 3a), 5a), 8b), and 9a) are C- and CP -odd.
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ψ̄Lγ
µχLχ̄Rγ

νψR C P T

1a) (ψ̄γµγ5χχ̄γνψ − ψ̄γµχχ̄γνγ5ψ)Fµν + − −
1b) i(ψ̄γµχχ̄γνψ − ψ̄γµγ5χχ̄γνγ5ψ)Fµν + + +

2a) (ψ̄γµγ5χχ̄γνψ − ψ̄γµχχ̄γνγ5ψ)F̃µν + + +

2b) i(ψ̄γµχχ̄γνψ − ψ̄γµγ5χχ̄γνγ5ψ)F̃µν + − −
3a) (ψ̄γµγ5T aχχ̄γνT aψ − ψ̄γµT aχχ̄γνγ5T aψ)Fµν + − −
3b) i(ψ̄γµT aχχ̄γνT aψ − ψ̄γµγ5T aχχ̄γνγ5T aψ)Fµν + + +

4a) (ψ̄γµγ5T aχχ̄γνT aψ − ψ̄γµT aχχ̄γνγ5T aψ)F̃µν + + +

4b) i(ψ̄γµT aχχ̄γνT aψ − ψ̄γµγ5T aχχ̄γνγ5T aψ)F̃µν + − −
5a)

[
ψ̄γµχχ̄γνT aψ − ψ̄γµγ5χχ̄γνT aγ5ψ + (ψ ↔ χ)

]
Gaµν − + −

5b)
[
ψ̄γµγ5χχ̄γνT aψ − ψ̄γµχχ̄γνT aγ5ψ + (ψ ↔ χ)

]
Gaµν + − −

5c) i
[
ψ̄γµχχ̄γνT aψ − ψ̄γµγ5χχ̄γνT aγ5ψ − (ψ ↔ χ)

]
Gaµν + + +

5d) i
[
ψ̄γµγ5χχ̄γνT aψ − ψ̄γµχχ̄γνT aγ5ψ − (ψ ↔ χ)

]
Gaµν − − +

6a)
[
ψ̄γµχχ̄γνT aψ − ψ̄γµγ5χχ̄γνT aγ5ψ + (ψ ↔ χ)

]
G̃aµν − − +

6b)
[
ψ̄γµγ5χχ̄γνT aψ − ψ̄γµχχ̄γνT aγ5ψ + (ψ ↔ χ)

]
G̃aµν + + +

6c) i
[
ψ̄γµχχ̄γνT aψ − ψ̄γµγ5χχ̄γνT aγ5ψ − (ψ ↔ χ)

]
G̃aµν + − −

6d) i
[
ψ̄γµγ5χχ̄γνT aψ − ψ̄γµχχ̄γνT aγ5ψ − (ψ ↔ χ)

]
G̃aµν − + −

7a) ifabc(ψ̄γµT aχχ̄γνT bγ5ψ − ψ̄γµT aγ5χχ̄γνT bψ)Gcµν + − −
7b) fabc(ψ̄γµT aχχ̄γνT bψ − ψ̄γµT aγ5χχ̄γνT bγ5ψ)Gcµν + + +

8a) ifabc(ψ̄γµT aχχ̄γνT bγ5ψ − ψ̄γµT aγ5χχ̄γνT bψ)G̃cµν + + +

8b) fabc(ψ̄γµT aχχ̄γνT bψ − ψ̄γµT aγ5χχ̄γνT bγ5ψ)G̃cµν + − −
9) dabc(ψ̄γµT aχχ̄γνT bγ5ψ − ψ̄γµT aγ5χχ̄γνT bψ)Gcµν + − −
10) dabc(ψ̄γµT aχχ̄γνT bγ5ψ − ψ̄γµT aγ5χχ̄γνT bψ)G̃cµν + + +

Table 6. Operators of the class ψ4X with well defined discrete space-time symmetries. All operators
follow the description given in table 3. The operators 5a) and 6d) are C- and CP -odd.
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ψ̄LχRχ̄Lσ
µνψR C P T

1a) i
[
ψ̄χχ̄σµνψ + ψ̄γ5χχ̄σµνγ5ψ − (ψ ↔ χ)

]
Fµν − + −

1b) i
[
ψ̄γ5χχ̄σµνψ + ψ̄χχ̄σµνγ5ψ + (ψ ↔ χ)

]
Fµν + − −

1c)
[
ψ̄χχ̄σµνψ + ψ̄γ5χχ̄σµνγ5ψ + (ψ ↔ χ)

]
Fµν + + +

1d)
[
ψ̄γ5χχ̄σµνψ + ψ̄χχ̄σµνγ5ψ − (ψ ↔ χ)

]
Fµν − − +

2a) i
[
ψ̄T aχχ̄σµνT aψ + ψ̄γ5T aχχ̄σµνγ5T aψ − (ψ ↔ χ)

]
Fµν − + −

2b) i
[
ψ̄γ5T aχχ̄σµνT aψ + ψ̄T aχχ̄σµνγ5T aψ + (ψ ↔ χ)

]
Fµν + − −

2c)
[
ψ̄T aχχ̄σµνT aψ + ψ̄γ5T aχχ̄σµνγ5T aψ + (ψ ↔ χ)

]
Fµν + + +

2d)
[
ψ̄γ5T aχχ̄σµνT aψ + ψ̄T aχχ̄σµνγ5T aψ − (ψ ↔ χ)

]
Fµν − − +

3a) i
[
ψ̄T aχχ̄σµνψ + ψ̄γ5T aχχ̄σµνγ5ψ − (ψ ↔ χ)

]
Gaµν − + −

3b) i
[
ψ̄γ5T aχχ̄σµνψ + ψ̄T aχχ̄σµνγ5ψ + (ψ ↔ χ)

]
Gaµν + − −

3c)
[
ψ̄T aχχ̄σµνψ + ψ̄γ5T aχχ̄σµνγ5ψ + (ψ ↔ χ)

]
Gaµν + + +

3d)
[
ψ̄γ5T aχχ̄σµνψ + ψ̄T aχχ̄σµνγ5ψ − (ψ ↔ χ)

]
Gaµν − − +

4a) i
[
ψ̄χχ̄σµνT aψ + ψ̄γ5χχ̄σµνγ5T aψ − (ψ ↔ χ)

]
Gaµν − + −

4b) i
[
ψ̄γ5χχ̄σµνT aψ + ψ̄χχ̄σµνγ5T aψ + (ψ ↔ χ)

]
Gaµν + − −

4c)
[
ψ̄χχ̄σµνT aψ + ψ̄γ5χχ̄σµνγ5T aψ + (ψ ↔ χ)

]
Gaµν + + +

4d)
[
ψ̄γ5χχ̄σµνT aψ + ψ̄χχ̄σµνγ5T aψ − (ψ ↔ χ)

]
Gaµν − − +

5a) idabc
[
ψ̄T aχχ̄σµνT bψ + ψ̄γ5T aχχ̄σµνγ5T bψ − (ψ ↔ χ)

]
Gcµν − + −

5b) idabc
[
ψ̄γ5T aχχ̄σµνT bψ + ψ̄T aχχ̄σµνγ5T bψ + (ψ ↔ χ)

]
Gcµν + − −

5c) dabc
[
ψ̄T aχχ̄σµνT bψ + ψ̄γ5T aχχ̄σµνγ5T bψ + (ψ ↔ χ)

]
Gcµν + + +

5d) dabc
[
ψ̄γ5T aχχ̄σµνT bψ + ψ̄T aχχ̄σµνγ5T bψ − (ψ ↔ χ)

]
Gcµν − − +

6a) ifabc
[
ψ̄T aχχ̄σµνT bψ + ψ̄γ5T aχχ̄σµνγ5T bψ − (ψ ↔ χ)

]
Gcµν + + +

6b) ifabc
[
ψ̄γ5T aχχ̄σµνT bψ + ψ̄T aχχ̄σµνγ5T bψ + (ψ ↔ χ)

]
Gcµν − − +

6c) fabc
[
ψ̄T aχχ̄σµνT bψ + ψ̄γ5T aχχ̄σµνγ5T bψ + (ψ ↔ χ)

]
Gcµν − + −

6d) fabc
[
ψ̄γ5T aχχ̄σµνT bψ + ψ̄T aχχ̄σµνγ5T bψ − (ψ ↔ χ)

]
Gcµν + − −

Table 7. Operators of the class ψ4X with well-defined discrete space-time symmetries. All operators
follow the description given in table 3. The operators 1a), 2a), 3a), 4a), 5a), and 6c) are C- and
CP -odd. Note that there are no operators with the dual field-strength tensor X̃ρ

ν in the considered
LEFT basis of ref. [21].
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ψ̄Lσ
λµχRχ̄LσµνψR C P T

1a) i
[
ψ̄σλµχχ̄σµνψ + ψ̄σλµγ5χχ̄σµνγ5ψ)

]
F νλ + + +

1b)
[
ψ̄σλµγ5χχ̄σµνψ + ψ̄σλµχχ̄σµνγ5ψ

]
F νλ + − −

2a) i
[
ψ̄σλµT aχχ̄σµνT

aψ + ψ̄σλµγ5T aχχ̄σµνγ5T aψ
]
F νλ + + +

2b)
[
ψ̄σλµγ5T aχχ̄σµνT aψ + ψ̄σλµT aχχ̄σµνγ5T aψ

]
F νλ + − −

3a) i
[
ψ̄σλµT aχχ̄σµνψ + ψ̄σλµγ5T aχχ̄σµνγ5ψ − (ψ ↔ χ)

]
Ga νλ + + +

3b) i
[
ψ̄σλµγ5T aχχ̄σµνψ + ψ̄σλµT aχχ̄σµνγ5ψ + (ψ ↔ χ)

]
Ga νλ − − +

3c)
[
ψ̄σλµT aχχ̄σµνψ + ψ̄σλµγ5T aχχ̄σµνγ5ψ + (ψ ↔ χ)

]
Ga νλ − + −

3d)
[
ψ̄σλµγ5T aχχ̄σµνψ + ψ̄σλµT aχχ̄σµνγ5ψ − (ψ ↔ χ)

]
Ga νλ + − −

4a) i
[
ψ̄σλµχχ̄σµνT

aψ + ψ̄σλµγ5χχ̄σµνγ5T aψ − (ψ ↔ χ)
]
Ga νλ + + +

4b) i
[
ψ̄σλµγ5χχ̄σµνT aψ + ψ̄σλµχχ̄σµνγ5T aψ + (ψ ↔ χ)

]
Ga νλ − − +

4c)
[
ψ̄σλµχχ̄σµνT

aψ + ψ̄γ5χχ̄σµνγ5T aψ + (ψ ↔ χ)
]
Ga νλ − + −

4d)
[
ψ̄σλµγ5χχ̄σµνT aψ + ψ̄σλµχχ̄σµνγ5T aψ − (ψ ↔ χ)

]
Ga νλ + − −

5a) idabc
[
ψ̄σλµT aχχ̄σµνT

bψ + ψ̄σλµγ5T aχχ̄σµνγ5T bψ
]
Gc νλ + + +

5b) dabc
[
ψ̄σλµγ5T aχχ̄σµνT bψ + ψ̄σλµT aχχ̄σµνγ5T bψ

]
Gc νλ + − −

6a) ifabc
[
ψ̄σλµγ5T aχχ̄σµνT bψ + ψ̄σλµT aχχ̄σµνγ5T bψ)

]
Gc νλ + − −

6b) fabc
[
ψ̄σλµT aχχ̄σµνT

bψ + ψ̄σλµγ5T aχχ̄σµνγ5T bψ
]
Gc νλ + + +

Table 8. Operators of the class ψ4X with well defined discrete space-time symmetries. All operators
follow the description given in table 3. The operators 3c) and 4c) are C- and CP -odd. Note that
there are no operators with the dual field-strength tensor X̃ρ

ν in the considered LEFT basis of
ref. [21].
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ψ̄L/RγµψL/Rχ̄L/Rγ
µχL/R & ψ̄L/RγµψL/Rχ̄R/Lγ

µχR/L C P T

1a) Dν(ψ̄γµψ)Dν(χ̄γµχ)±Dν(ψ̄γµγ5ψ)Dν(χ̄γµγ5χ) + + +

1b) Dν(ψ̄γµψ)Dν(χ̄γµγ5χ)±Dν(ψ̄γµγ5ψ)Dν(χ̄γµχ) − − +

2a) ψ̄γµD~

~

νψχ̄γ
µD~

~

νχ± ψ̄γµγ5D~

~

νψχ̄γ
µγ5D~

~

νχ + + +

2b) ψ̄γµD~

~

νψχ̄γ
µD~

~

νγ5χ± ψ̄γµγ5D~

~

νψχ̄γ
µD~

~

νχ − − +

3a) Dν(ψ̄γµT aψ)Dν(χ̄γµT aχ)±Dν(ψ̄γµγ5T aψ)Dν(χ̄γµγ5T aχ) + + +

3b) Dν(ψ̄γµT aψ)Dν(χ̄γµγ5T aχ)±Dν(ψ̄γµγ5T aψ)Dν(χ̄γµT aχ) − − +

4a) ψ̄γµD~

~

νT
aψχ̄γµD~

~

νT aχ± ψ̄γµγ5D~

~

νT
aψχ̄γµγ5D~

~

νT aχ + + +

4b) ψ̄γµD~

~

νT
aψχ̄γµD~

~

νγ5T aχ± ψ̄γµγ5D~

~

νT
aψχ̄γµD~

~

νT aχ − − +

Table 9. Operators of the class ψ4D2 with well defined discrete space-time symmetries. All
operators follow the description given in table 3. None of these operators is C- and CP -odd.

ψ̄LγµχLχ̄Rγ
µψR C P T

1a) Dν(ψ̄γµχ)Dν(χ̄γµψ)−Dν(ψ̄γµγ5χ)Dν(χ̄γµγ5ψ) + + +

1b) i
[
Dν(ψ̄γµχ)Dν(χ̄γµγ5ψ)−Dν(ψ̄γµγ5χ)Dν(χ̄γµψ)

]
+ − −

2a) ψ̄γµD~

~

νχχ̄γ
µD~

~

νψ − ψ̄γµγ5D~

~

νχχ̄γ
µγ5D~

~

νψ + + +

2b) i
[
ψ̄γµD~

~

νχχ̄γ
µD~

~

νγ5ψ − ψ̄γµγ5D~

~

νχχ̄γ
µD~

~

νψ
]

+ − −
3a) Dν(ψ̄γµT aχ)Dν(χ̄γµT aψ)−Dν(ψ̄γµγ5T aχ)Dν(χ̄γµγ5T aψ) + + +

3b) i
[
Dν(ψ̄γµT aχ)Dν(χ̄γµγ5T aψ)−Dν(ψ̄γµγ5T aχ)Dν(χ̄γµT aψ)

]
+ − −

4a) ψ̄γµD~

~

νT
aχχ̄γµD~

~

νT aψ − ψ̄γµγ5D~

~

νT
aχχ̄γµγ5D~

~

νT aψ + + +

4b) i
[
ψ̄γµD~

~

νT
aχχ̄γµD~

~

νγ5T aψ − ψ̄γµγ5D~

~

νT
aχχ̄γµD~

~

νT aψ
]

+ − −

Table 10. Operators of the class ψ4D2 with well defined discrete space-time symmetries. All
operators follow the description given in table 3. None of these operators is C- and CP -odd.

– 64 –



J
H
E
P
0
6
(
2
0
2
3
)
1
5
4

ψ̄LχRχ̄LψR C P T

1a) Dµ(ψ̄χ)Dµ(χ̄ψ) +Dµ(ψ̄γ5χ)Dµ(χ̄γ5ψ) + + +

1b) i
[
Dµ(ψ̄χ)Dµ(χ̄γ5ψ) +Dµ(ψ̄γ5χ)Dµ(χ̄ψ)

]
+ − −

2a) ψ̄D~

~

µχχ̄D~

~

µψ + ψ̄γ5D~

~

µχχ̄γ5D~

~

µψ + + +

2b) i
[
ψ̄D~

~

µχχ̄D~

~

µγ5ψ + ψ̄γ5D~

~

µχχ̄D~

~

µψ
]

+ − −
3a) Dµ(ψ̄T aχ)Dµ(χ̄T aψ) +Dµ(ψ̄γ5T aχ)Dµ(χ̄γ5T aψ) + + +

3b) i
[
Dµ(ψ̄T aχ)Dµ(χ̄γ5T aψ) +Dµ(ψ̄γ5T aχ)Dµ(χ̄T aψ)

]
+ − −

4a) ψ̄D~

~

µT
aχχ̄D~

~

µT aψ + ψ̄γ5D~

~

µT
aχχ̄γ5D~

~

µT aψ + + +

4b) i
[
ψ̄D~

~

µT
aχχ̄D~

~

µγ5T aψ + ψ̄γ5D~

~

µT
aχχ̄D~

~

µT aψ
]

+ − −

Table 11. Operators of the class ψ4D2 with well defined discrete space-time symmetries. All
operators follow the description given in table 3. None of these operators is C- and CP -odd.

ψ̄LψRχ̄LχR C P T

1a) Dµ(ψ̄ψ)Dµ(χ̄χ) +Dµ(ψ̄γ5ψ)Dµ(χ̄γ5χ) + + +

1b) i
[
Dµ(ψ̄ψ)Dµ(χ̄γ5χ) +Dµ(ψ̄γ5ψ)Dµ(χ̄χ)

]
+ − −

2a) ψ̄D~

~

µψχ̄D~

~

µχ+ ψ̄γ5D~

~

µψχ̄γ5D~

~

µχ + + +

2b) i
[
ψ̄D~

~

µψχ̄D~

~

µγ5χ+ ψ̄γ5D~

~

µψχ̄D~

~

µχ
]

+ − −
3a) Dµ(ψ̄T aψ)Dµ(χ̄T aχ) +Dµ(ψ̄γ5T aψ)Dµ(χ̄γ5T aχ) + + +

3b) i
[
Dµ(ψ̄T aψ)Dµ(χ̄γ5T aχ) +Dµ(ψ̄γ5T aψ)Dµ(χ̄T aχ)

]
+ − −

4a) ψ̄D~

~

µT
aψχ̄D~

~

µT aχ+ ψ̄γ5D~

~

µT
aψχ̄γ5D~

~

µT aχ + + +

4b) i
[
ψ̄D~

~

µT
aψχ̄D~

~

µγ5T aχ+ ψ̄γ5D~

~

µT
aψχ̄D~

~

µT aχ
]

+ − −

Table 12. Operators of the class ψ4D2 with well defined discrete space-time symmetries. All
operators follow the description given in table 3. None of these operators is C- and CP -odd.
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