001008687 001__ 1008687
001008687 005__ 20231215105220.0
001008687 0247_ $$2doi$$a10.3389/fmicb.2023.1198170
001008687 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02478
001008687 0247_ $$2pmid$$a37408642
001008687 0247_ $$2WOS$$aWOS:001022849200001
001008687 037__ $$aFZJ-2023-02478
001008687 082__ $$a570
001008687 1001_ $$0P:(DE-Juel1)191491$$aKasahara, Keitaro$$b0
001008687 245__ $$aEnabling oxygen-controlled microfluidic cultures for spatiotemporal microbial single-cell analysis
001008687 260__ $$aLausanne$$bFrontiers Media$$c2023
001008687 3367_ $$2DRIVER$$aarticle
001008687 3367_ $$2DataCite$$aOutput Types/Journal article
001008687 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1689163701_18233
001008687 3367_ $$2BibTeX$$aARTICLE
001008687 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008687 3367_ $$00$$2EndNote$$aJournal Article
001008687 520__ $$aMicrofluidic cultivation devices that facilitate O2 control enable unique studies of the complex interplay between environmental O2 availability and microbial physiology at the single-cell level. Therefore, microbial single-cell analysis based on time-lapse microscopy is typically used to resolve microbial behavior at the single-cell level with spatiotemporal resolution. Time-lapse imaging then provides large image-data stacks that can be efficiently analyzed by deep learning analysis techniques, providing new insights into microbiology. This knowledge gain justifies the additional and often laborious microfluidic experiments. Obviously, the integration of on-chip O2 measurement and control during the already complex microfluidic cultivation, and the development of image analysis tools, can be a challenging endeavor. A comprehensive experimental approach to allow spatiotemporal single-cell analysis of living microorganisms under controlled O2 availability is presented here. To this end, a gas-permeable polydimethylsiloxane microfluidic cultivation chip and a low-cost 3D-printed mini-incubator were successfully used to control O2 availability inside microfluidic growth chambers during time-lapse microscopy. Dissolved O2 was monitored by imaging the fluorescence lifetime of the O2-sensitive dye RTDP using FLIM microscopy. The acquired image-data stacks from biological experiments containing phase contrast and fluorescence intensity data were analyzed using in-house developed and open-source image-analysis tools. The resulting oxygen concentration could be dynamically controlled between 0% and 100%. The system was experimentally tested by culturing and analyzing an E. coli strain expressing green fluorescent protein as an indirect intracellular oxygen indicator. The presented system allows for innovative microbiological research on microorganisms and microbial ecology with single-cell resolution.
001008687 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001008687 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1
001008687 588__ $$aDataset connected to DataCite
001008687 7001_ $$0P:(DE-Juel1)174348$$aLeygeber, Markus$$b1
001008687 7001_ $$0P:(DE-Juel1)176923$$aSeiffarth, Johannes$$b2$$ufzj
001008687 7001_ $$0P:(DE-Juel1)180323$$aRuzaeva, Karina$$b3$$ufzj
001008687 7001_ $$0P:(DE-Juel1)131426$$aDrepper, Thomas$$b4
001008687 7001_ $$0P:(DE-Juel1)129051$$aNöh, Katharina$$b5
001008687 7001_ $$0P:(DE-Juel1)140195$$aKohlheyer, Dietrich$$b6$$eCorresponding author
001008687 773__ $$0PERI:(DE-600)2587354-4$$a10.3389/fmicb.2023.1198170$$gVol. 14, p. 1198170$$p1198170$$tFrontiers in microbiology$$v14$$x1664-302X$$y2023
001008687 8564_ $$uhttps://juser.fz-juelich.de/record/1008687/files/fmicb-14-1198170.pdf$$yOpenAccess
001008687 8767_ $$d2023-06-27$$eAPC$$jDeposit$$z2741,25 $
001008687 909CO $$ooai:juser.fz-juelich.de:1008687$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001008687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191491$$aForschungszentrum Jülich$$b0$$kFZJ
001008687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176923$$aForschungszentrum Jülich$$b2$$kFZJ
001008687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180323$$aForschungszentrum Jülich$$b3$$kFZJ
001008687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131426$$aForschungszentrum Jülich$$b4$$kFZJ
001008687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129051$$aForschungszentrum Jülich$$b5$$kFZJ
001008687 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140195$$aForschungszentrum Jülich$$b6$$kFZJ
001008687 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001008687 9141_ $$y2023
001008687 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-09
001008687 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-09
001008687 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008687 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T10:43:17Z
001008687 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T10:43:17Z
001008687 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-09
001008687 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2022-11-09
001008687 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008687 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2022-11-09
001008687 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-11T10:43:17Z
001008687 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT MICROBIOL : 2022$$d2023-10-26
001008687 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001008687 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001008687 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-26
001008687 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001008687 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-26
001008687 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001008687 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT MICROBIOL : 2022$$d2023-10-26
001008687 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008687 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001008687 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
001008687 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x1
001008687 980__ $$ajournal
001008687 980__ $$aVDB
001008687 980__ $$aUNRESTRICTED
001008687 980__ $$aI:(DE-Juel1)IBG-1-20101118
001008687 980__ $$aI:(DE-Juel1)IMET-20090612
001008687 980__ $$aAPC
001008687 9801_ $$aAPC
001008687 9801_ $$aFullTexts