001     1008688
005     20231215103936.0
024 7 _ |a 10.3389/fphy.2023.1223609
|2 doi
024 7 _ |a 10.34734/FZJ-2023-02479
|2 datacite_doi
024 7 _ |a WOS:001017882900001
|2 WOS
037 _ _ |a FZJ-2023-02479
082 _ _ |a 530
100 1 _ |a Savchenko, Andrii S.
|0 P:(DE-Juel1)180822
|b 0
|e Corresponding author
245 _ _ |a Magnetic bubbles with alternating chirality in domain walls
260 _ _ |a Lausanne
|c 2023
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1688024461_2761
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In magnetic multilayers with perpendicular anisotropy, the competition of short-range and long-range interactions gives rise to the stability of cylindrical magnetic domains, also known as magnetic bubbles. The presence of Dzyaloshinsky-Moriya interaction induced by asymmetric interfaces between magnetic and nonmagnetic layers may lead to the formation of cylindrical bubble domains with Neel-type domain walls across the whole thickness of the multilayer. Such domain walls produce no contrast in Lorentz TEM under the normal incidence of the electron beam to the film. The latter is often used as an argument for the presence of Dzyaloshinskii-Moriya interaction in the system. Here we show that in magnetic multilayers, the absence of the Lorentz TEM contrast might also have another origin. In particular, in the absence of interfacial Dzyaloshinskii-Moriya interaction and weak interlayer exchange coupling, the magnetic bubbles might have Bloch-type domain walls of alternate chirality in adjacent layers. Such domain walls also do not produce magnetic contrast in Lorentz TEM at normal incidence of the electron beam. We show that, in the absence of interlayer exchange coupling, the magnetic bubble domains with the domain walls of fixed and alternate chirality have nearly identical energies and can coexist in the same range of magnetic fields. Using the geodesic nudged elastic band method, we prove that these states are separated by finite energy barriers. Furthermore, we demonstrate that magnetic multilayers with only dipolar coupling, besides the magnetic bubbles with nontrivial topology in all layers, can accommodate solutions with trivial topology within the internal layers.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|f ERC-2019-SyG
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kuchkin, Vladyslav
|0 P:(DE-Juel1)176480
|b 1
|u fzj
700 1 _ |a Rybakov, Filipp N.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kiselev, Nikolai
|0 P:(DE-Juel1)145390
|b 3
|u fzj
773 _ _ |a 10.3389/fphy.2023.1223609
|g Vol. 11, p. 1223609
|0 PERI:(DE-600)2721033-9
|p 1223609
|t Frontiers in physics
|v 11
|y 2023
|x 2296-424X
856 4 _ |u https://juser.fz-juelich.de/record/1008688/files/fphy-11-1223609.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1008688
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180822
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176480
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145390
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-15
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-12T10:34:55Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-12T10:34:55Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-15
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2022-11-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2022-11-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT PHYS-LAUSANNE : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-05-12T10:34:55Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-23
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-23
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DOAJ Journal
|2 APC
|0 PC:(DE-HGF)0003
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21