001008689 001__ 1008689
001008689 005__ 20240610120058.0
001008689 0247_ $$2doi$$a10.1039/D3SM00004D
001008689 0247_ $$2ISSN$$a1744-683X
001008689 0247_ $$2ISSN$$a1744-6848
001008689 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02480
001008689 0247_ $$2pmid$$a37132446
001008689 0247_ $$2WOS$$aWOS:000979621300001
001008689 037__ $$aFZJ-2023-02480
001008689 082__ $$a530
001008689 1001_ $$0P:(DE-Juel1)186024$$aIyer, Priyanka$$b0
001008689 245__ $$aDynamic shapes of floppy vesicles enclosing active Brownian particles with membrane adhesion
001008689 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2023
001008689 3367_ $$2DRIVER$$aarticle
001008689 3367_ $$2DataCite$$aOutput Types/Journal article
001008689 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692335615_29737
001008689 3367_ $$2BibTeX$$aARTICLE
001008689 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008689 3367_ $$00$$2EndNote$$aJournal Article
001008689 520__ $$aRecent advances in micro- and nano-technologies allow the construction of complex active systems from biological and synthetic materials. An interesting example is active vesicles, which consist of a membrane enclosing self-propelled particles, and exhibit several features resembling biological cells. We investigate numerically the behavior of active vesicles, where the enclosed self-propelled particles can adhere to the membrane. A vesicle is represented by a dynamically triangulated membrane, while the adhesive active particles are modelled as active Brownian particles (ABPs) that interact with the membrane via the Lennard-Jones potential. Phase diagrams of dynamic vesicle shapes as a function of ABP activity and particle volume fraction inside the vesicle are constructed for different strengths of adhesive interactions. At low ABP activity, adhesive interactions dominate over the propulsion forces, such that the vesicle attains near static configurations, with protrusions of membrane-wrapped ABPs having ring-like and sheet-like structures. At moderate particle densities and strong enough activities, active vesicles show dynamic highly-branched tethers filled with string-like arrangements of ABPs, which do not occur in the absence of particle adhesion to the membrane. At large volume fractions of ABPs, vesicles fluctuate for moderate particle activities, and elongate and finally split into two vesicles for large ABP propulsion strengths. We also analyze membrane tension, active fluctuations, and ABP characteristics (e.g., mobility, clustering), and compare them to the case of active vesicles with non-adhesive ABPs. The adhesion of ABPs to the membrane significantly alters the behavior of active vesicles, and provides an additional parameter for controlling their behavior.
001008689 536__ $$0G:(DE-HGF)POF4-5243$$a5243 - Information Processing in Distributed Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001008689 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008689 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b1
001008689 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry A.$$b2$$eCorresponding author
001008689 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/D3SM00004D$$gVol. 19, no. 19, p. 3436 - 3449$$n19$$p3436 - 3449$$tSoft matter$$v19$$x1744-683X$$y2023
001008689 8564_ $$uhttps://juser.fz-juelich.de/record/1008689/files/d3sm00004d.pdf$$yOpenAccess
001008689 8767_ $$d2023-06-27$$eHybrid-OA$$jPublish and Read
001008689 909CO $$ooai:juser.fz-juelich.de:1008689$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001008689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186024$$aForschungszentrum Jülich$$b0$$kFZJ
001008689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b1$$kFZJ
001008689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b2$$kFZJ
001008689 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5243$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001008689 9141_ $$y2023
001008689 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008689 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001008689 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001008689 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-13
001008689 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-13
001008689 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008689 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-25$$wger
001008689 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001008689 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001008689 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001008689 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001008689 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001008689 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2022$$d2023-10-25
001008689 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-25
001008689 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
001008689 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1
001008689 9801_ $$aAPC
001008689 9801_ $$aFullTexts
001008689 980__ $$ajournal
001008689 980__ $$aVDB
001008689 980__ $$aUNRESTRICTED
001008689 980__ $$aI:(DE-Juel1)IBI-5-20200312
001008689 980__ $$aAPC
001008689 980__ $$aI:(DE-Juel1)IAS-2-20090406
001008689 981__ $$aI:(DE-Juel1)IAS-2-20090406