001008851 001__ 1008851
001008851 005__ 20240709082211.0
001008851 0247_ $$2doi$$a10.1021/acsenergylett.3c00722
001008851 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02511
001008851 0247_ $$2WOS$$aWOS:001018988800001
001008851 037__ $$aFZJ-2023-02511
001008851 041__ $$aEnglish
001008851 082__ $$a333.7
001008851 1001_ $$0P:(DE-HGF)0$$aRana, Moumita$$b0$$eCorresponding author
001008851 245__ $$aToward Achieving High Areal Capacity in Silicon-Based Solid-State Battery Anodes: What Influences the Rate-Performance?
001008851 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2023
001008851 3367_ $$2DRIVER$$aarticle
001008851 3367_ $$2DataCite$$aOutput Types/Journal article
001008851 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1705300021_16973
001008851 3367_ $$2BibTeX$$aARTICLE
001008851 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008851 3367_ $$00$$2EndNote$$aJournal Article
001008851 520__ $$aAchieving high areal capacity and rate performance in solid-state battery electrodes is challenging due to sluggish charge carrier transport through thick all-solid composite electrodes, as the transport strongly relies on the microstructure and porosity of the compressed composite. Introducing a high-capacity material like silicon for such a purpose would require fast ionic and electronic transport throughout the electrode. In this work, by designing a composite electrode containing Si nanoparticles, a superionic solid electrolyte (SE), and a carbon additive, the possibility of achieving areal capacities over 10 mAh·cm–2 and 4 mAh·cm–2 at current densities of 1.6 mA·cm–2 and 8 mA·cm–2, respectively, at room temperature is demonstrated. Using DC polarization measurements, impedance spectroscopy, microscopic analyses, and microstructure modeling, we establish that the route to achieve high-performance anode composites is microstructure modulation through attaining high silicon/solid electrolyte interface contacts, particle size compatibility of the composite components, and their well-distributed compact packing in the compressed electrode.
001008851 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001008851 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008851 7001_ $$0P:(DE-HGF)0$$aRudel, Yannik$$b1
001008851 7001_ $$0P:(DE-HGF)0$$aHeuer, Philip$$b2
001008851 7001_ $$aSchlautmann, Eva$$b3
001008851 7001_ $$aRosenbach, Carolin$$b4
001008851 7001_ $$aAli, Md Yusuf$$b5
001008851 7001_ $$aWiggers, Hartmut$$b6
001008851 7001_ $$0P:(DE-HGF)0$$aBielefeld, Anja$$b7$$eCorresponding author
001008851 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b8$$eCorresponding author
001008851 773__ $$0PERI:(DE-600)2864177-2$$a10.1021/acsenergylett.3c00722$$gp. 3196 - 3203$$n7$$p3196 - 3203$$tACS energy letters$$v8$$x2380-8195$$y2023
001008851 8564_ $$uhttps://juser.fz-juelich.de/record/1008851/files/Accepted_Manuscript.pdf$$yPublished on 2023-06-29. Available in OpenAccess from 2024-06-29.
001008851 909CO $$ooai:juser.fz-juelich.de:1008851$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001008851 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b8$$kFZJ
001008851 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001008851 9141_ $$y2023
001008851 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
001008851 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
001008851 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
001008851 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS ENERGY LETT : 2022$$d2023-08-25
001008851 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001008851 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001008851 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001008851 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001008851 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
001008851 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001008851 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bACS ENERGY LETT : 2022$$d2023-08-25
001008851 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001008851 9801_ $$aFullTexts
001008851 980__ $$ajournal
001008851 980__ $$aVDB
001008851 980__ $$aUNRESTRICTED
001008851 980__ $$aI:(DE-Juel1)IEK-12-20141217
001008851 981__ $$aI:(DE-Juel1)IMD-4-20141217