001     1008851
005     20240709082211.0
024 7 _ |a 10.1021/acsenergylett.3c00722
|2 doi
024 7 _ |a 10.34734/FZJ-2023-02511
|2 datacite_doi
024 7 _ |a WOS:001018988800001
|2 WOS
037 _ _ |a FZJ-2023-02511
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Rana, Moumita
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Toward Achieving High Areal Capacity in Silicon-Based Solid-State Battery Anodes: What Influences the Rate-Performance?
260 _ _ |a Washington, DC
|c 2023
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1705300021_16973
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Achieving high areal capacity and rate performance in solid-state battery electrodes is challenging due to sluggish charge carrier transport through thick all-solid composite electrodes, as the transport strongly relies on the microstructure and porosity of the compressed composite. Introducing a high-capacity material like silicon for such a purpose would require fast ionic and electronic transport throughout the electrode. In this work, by designing a composite electrode containing Si nanoparticles, a superionic solid electrolyte (SE), and a carbon additive, the possibility of achieving areal capacities over 10 mAh·cm–2 and 4 mAh·cm–2 at current densities of 1.6 mA·cm–2 and 8 mA·cm–2, respectively, at room temperature is demonstrated. Using DC polarization measurements, impedance spectroscopy, microscopic analyses, and microstructure modeling, we establish that the route to achieve high-performance anode composites is microstructure modulation through attaining high silicon/solid electrolyte interface contacts, particle size compatibility of the composite components, and their well-distributed compact packing in the compressed electrode.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rudel, Yannik
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Heuer, Philip
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schlautmann, Eva
|b 3
700 1 _ |a Rosenbach, Carolin
|b 4
700 1 _ |a Ali, Md Yusuf
|b 5
700 1 _ |a Wiggers, Hartmut
|b 6
700 1 _ |a Bielefeld, Anja
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
700 1 _ |a Zeier, Wolfgang G.
|0 P:(DE-Juel1)184735
|b 8
|e Corresponding author
773 _ _ |a 10.1021/acsenergylett.3c00722
|g p. 3196 - 3203
|0 PERI:(DE-600)2864177-2
|n 7
|p 3196 - 3203
|t ACS energy letters
|v 8
|y 2023
|x 2380-8195
856 4 _ |u https://juser.fz-juelich.de/record/1008851/files/Accepted_Manuscript.pdf
|y Published on 2023-06-29. Available in OpenAccess from 2024-06-29.
909 C O |o oai:juser.fz-juelich.de:1008851
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2023
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-22
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS ENERGY LETT : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b ACS ENERGY LETT : 2022
|d 2023-08-25
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21