001008876 001__ 1008876
001008876 005__ 20250129094313.0
001008876 0247_ $$2doi$$a10.1007/s10967-023-08989-z
001008876 0247_ $$2ISSN$$a0022-4081
001008876 0247_ $$2ISSN$$a0236-5731
001008876 0247_ $$2ISSN$$a0134-0719
001008876 0247_ $$2ISSN$$a1417-2097
001008876 0247_ $$2ISSN$$a1588-2780
001008876 0247_ $$2ISSN$$a2064-2857
001008876 0247_ $$2datacite_doi$$a10.34734/FZJ-2023-02520
001008876 0247_ $$2WOS$$aWOS:001020284100001
001008876 037__ $$aFZJ-2023-02520
001008876 082__ $$a540
001008876 1001_ $$0P:(DE-Juel1)179117$$aOphoven, Niklas$$b0
001008876 245__ $$aPrompt gamma rays from fast neutron induced reactions on cerium and chlorine
001008876 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V.$$c2023
001008876 3367_ $$2DRIVER$$aarticle
001008876 3367_ $$2DataCite$$aOutput Types/Journal article
001008876 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1692168915_3683
001008876 3367_ $$2BibTeX$$aARTICLE
001008876 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001008876 3367_ $$00$$2EndNote$$aJournal Article
001008876 520__ $$aPrompt gamma rays of cerium and chlorine were investigated with the FaNGaS (Fast Neutron-induced Gamma-ray Spectrometry) instrument operated at the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching. The gamma radiation was emitted from (n,n’), (n,p) and (n,α) reactions induced by the irradiation of a cerium(III) chloride (CeCl3) sample with a beam of fission neutrons. Additionally, a polyvinylchloride (PVC, (C2H3Cl)n) sample was irradiated to verify possible interferences between gamma lines of cerium and chlorine. We identified 87 prompt gamma lines of cerium and chlorine. From these, we assigned 58 lines to the (n,n’) reaction in cerium (one for 136Ce, 41 for 140Ce and 16 for 142Ce), 23 to the (n,n’) reaction in chlorine (15 for 35Cl and 8 for 37Cl), 5 lines to the 35Cl(n,p)35S reaction and 1 line to the 35Cl(n,α)32P reaction. We present relative intensities and fast-neutron spectrum-averaged partial cross sections of the aforementioned gamma lines and compare them with available literature data. Identification of new lines and discussion of possible errors adds important value to the literature data found to be consistent with our results. In addition, for a counting time of 12 h we estimate the detection limits for cerium and chlorine as 1 and 2 mg, respectively.
001008876 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001008876 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001008876 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001008876 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
001008876 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
001008876 693__ $$0EXP:(DE-MLZ)MEDAPP-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MEDAPP-20140101$$6EXP:(DE-MLZ)SR10-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eMedical Application Facility$$fSR10$$x0
001008876 7001_ $$0P:(DE-Juel1)172806$$aIlic, Zeljko$$b1
001008876 7001_ $$0P:(DE-Juel1)130382$$aMauerhofer, Eric$$b2$$ufzj
001008876 7001_ $$0P:(DE-Juel1)131296$$aRandriamalala, Tsitohaina H.$$b3$$ufzj
001008876 7001_ $$0P:(DE-Juel1)164258$$aVezhlev, Egor$$b4$$ufzj
001008876 7001_ $$0P:(DE-HGF)0$$aStieghorst, Christian$$b5
001008876 7001_ $$0P:(DE-HGF)0$$aRévay, Zsolt$$b6
001008876 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b7$$ufzj
001008876 7001_ $$0P:(DE-HGF)0$$aJolie, Jan$$b8
001008876 7001_ $$0P:(DE-HGF)0$$aStrub, Erik$$b9
001008876 773__ $$0PERI:(DE-600)2017242-4$$a10.1007/s10967-023-08989-z$$p3133-3145$$tJournal of radioanalytical and nuclear chemistry$$v332$$x0022-4081$$y2023
001008876 8564_ $$uhttps://juser.fz-juelich.de/record/1008876/files/ophoven_Publication_FANGASvIIICeCl3_Revision_Final.docx$$yOpenAccess
001008876 8564_ $$uhttps://juser.fz-juelich.de/record/1008876/files/s10967-023-08989-z.pdf$$yOpenAccess
001008876 8767_ $$d2023-09-08$$eHybrid-OA$$jDEAL
001008876 909CO $$ooai:juser.fz-juelich.de:1008876$$pdnbdelivery$$popenCost$$pVDB$$pVDB:MLZ$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001008876 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179117$$aForschungszentrum Jülich$$b0$$kFZJ
001008876 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130382$$aForschungszentrum Jülich$$b2$$kFZJ
001008876 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131296$$aForschungszentrum Jülich$$b3$$kFZJ
001008876 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164258$$aForschungszentrum Jülich$$b4$$kFZJ
001008876 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b7$$kFZJ
001008876 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001008876 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001008876 9141_ $$y2023
001008876 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001008876 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001008876 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-22
001008876 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001008876 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-22
001008876 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2022-11-22$$wger
001008876 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001008876 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-26$$wger
001008876 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
001008876 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
001008876 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
001008876 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
001008876 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-26
001008876 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ RADIOANAL NUCL CH : 2022$$d2023-08-26
001008876 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
001008876 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
001008876 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
001008876 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001008876 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
001008876 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001008876 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x3
001008876 9201_ $$0I:(DE-Juel1)JCNS-ESS-20170404$$kJCNS-ESS$$lJCNS-ESS$$x4
001008876 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x5
001008876 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x6
001008876 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x7
001008876 9801_ $$aFullTexts
001008876 980__ $$ajournal
001008876 980__ $$aVDB
001008876 980__ $$aUNRESTRICTED
001008876 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001008876 980__ $$aI:(DE-Juel1)PGI-4-20110106
001008876 980__ $$aI:(DE-82)080009_20140620
001008876 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
001008876 980__ $$aI:(DE-Juel1)JCNS-ESS-20170404
001008876 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001008876 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001008876 980__ $$aI:(DE-588b)4597118-3
001008876 980__ $$aAPC
001008876 981__ $$aI:(DE-Juel1)JCNS-2-20110106