001008877 001__ 1008877
001008877 005__ 20230704203323.0
001008877 0247_ $$2doi$$a10.24435/MATERIALSCLOUD:9B-FV
001008877 037__ $$aFZJ-2023-02521
001008877 041__ $$aEnglish
001008877 1001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b0$$eCorresponding author$$ufzj
001008877 245__ $$aDensity functional Bogoliubov-de Gennes analysis of superconducting Nb and Nb(110) surfaces
001008877 260__ $$bMaterials Cloud$$c2021
001008877 3367_ $$2BibTeX$$aMISC
001008877 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1688475124_20784
001008877 3367_ $$026$$2EndNote$$aChart or Table
001008877 3367_ $$2DataCite$$aDataset
001008877 3367_ $$2ORCID$$aDATA_SET
001008877 3367_ $$2DINI$$aResearchData
001008877 520__ $$aMaterial-specific calculations based on density functional theory play a major role in understanding and designing the properties of quantum matter. In the field of topological quantum computing there is an intense search for material systems that have the ability to realize Majorana zero modes. The ability to combine the accurate electronic structure, that is accessible from density functional theory, with superconductivity can help gaining material-specific insights and may contribute to the understanding and realization of Majorana zero modes in solid state systems. In this work we report on our implementation of the Bogoliubov-de Gennes method into the JuKKR code [https://jukkr.fz-juelich.de], an implementation of the all-electron, full-potential Korringa-Kohn-Rostoker Green function method, which allows a material-specific description of inhomogeneous superconductors and heterostructures on the basis of density functional theory. We describe the formalism and report on calculations for the s-wave superconductor Nb. We compare the properties of the superconducting state both in the bulk and for (110) thin films of different thickness. We comment on the importance of spin-orbit coupling, the effect of surface relaxations and the influence of a softening of phonon modes on the surface for the resulting superconducting gap.This dataset contains the Fleur and KKR calculations that were done in this study using the AiiDA-Fleur and AiiDA-KKR plugins and a tutorial that introduces the practical use of AiiDA-KKR for BdG calculations.
001008877 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001008877 536__ $$0G:(BMBF)390534769$$aEXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x1
001008877 588__ $$aDataset connected to DataCite
001008877 650_7 $$2Other$$adensity functional theory
001008877 650_7 $$2Other$$aSuperconductivity
001008877 650_7 $$2Other$$aBogoliubov-de Gennes
001008877 650_7 $$2Other$$aJuKKR
001008877 650_7 $$2Other$$aAiiDA-KKR
001008877 650_7 $$2Other$$aNb
001008877 650_7 $$2Other$$aSurface
001008877 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1$$ufzj
001008877 773__ $$a10.24435/MATERIALSCLOUD:9B-FV$$v2021.163
001008877 909CO $$ooai:juser.fz-juelich.de:1008877$$pVDB
001008877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b0$$kFZJ
001008877 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
001008877 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001008877 920__ $$lyes
001008877 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001008877 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001008877 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
001008877 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
001008877 980__ $$adataset
001008877 980__ $$aVDB
001008877 980__ $$aI:(DE-Juel1)PGI-1-20110106
001008877 980__ $$aI:(DE-Juel1)IAS-1-20090406
001008877 980__ $$aI:(DE-82)080012_20140620
001008877 980__ $$aI:(DE-82)080009_20140620
001008877 980__ $$aUNRESTRICTED