001     1008877
005     20230704203323.0
024 7 _ |a 10.24435/MATERIALSCLOUD:9B-FV
|2 doi
037 _ _ |a FZJ-2023-02521
041 _ _ |a English
100 1 _ |a Rüssmann, Philipp
|0 P:(DE-Juel1)157882
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Density functional Bogoliubov-de Gennes analysis of superconducting Nb and Nb(110) surfaces
260 _ _ |c 2021
|b Materials Cloud
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Dataset
|b dataset
|m dataset
|0 PUB:(DE-HGF)32
|s 1688475124_20784
|2 PUB:(DE-HGF)
336 7 _ |a Chart or Table
|0 26
|2 EndNote
336 7 _ |a Dataset
|2 DataCite
336 7 _ |a DATA_SET
|2 ORCID
336 7 _ |a ResearchData
|2 DINI
520 _ _ |a Material-specific calculations based on density functional theory play a major role in understanding and designing the properties of quantum matter. In the field of topological quantum computing there is an intense search for material systems that have the ability to realize Majorana zero modes. The ability to combine the accurate electronic structure, that is accessible from density functional theory, with superconductivity can help gaining material-specific insights and may contribute to the understanding and realization of Majorana zero modes in solid state systems. In this work we report on our implementation of the Bogoliubov-de Gennes method into the JuKKR code [https://jukkr.fz-juelich.de], an implementation of the all-electron, full-potential Korringa-Kohn-Rostoker Green function method, which allows a material-specific description of inhomogeneous superconductors and heterostructures on the basis of density functional theory. We describe the formalism and report on calculations for the s-wave superconductor Nb. We compare the properties of the superconducting state both in the bulk and for (110) thin films of different thickness. We comment on the importance of spin-orbit coupling, the effect of surface relaxations and the influence of a softening of phonon modes on the surface for the resulting superconducting gap.This dataset contains the Fleur and KKR calculations that were done in this study using the AiiDA-Fleur and AiiDA-KKR plugins and a tutorial that introduces the practical use of AiiDA-KKR for BdG calculations.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a EXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)
|0 G:(BMBF)390534769
|c 390534769
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a density functional theory
|2 Other
650 _ 7 |a Superconductivity
|2 Other
650 _ 7 |a Bogoliubov-de Gennes
|2 Other
650 _ 7 |a JuKKR
|2 Other
650 _ 7 |a AiiDA-KKR
|2 Other
650 _ 7 |a Nb
|2 Other
650 _ 7 |a Surface
|2 Other
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 1
|u fzj
773 _ _ |a 10.24435/MATERIALSCLOUD:9B-FV
|v 2021.163
909 C O |o oai:juser.fz-juelich.de:1008877
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157882
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21