001008879 001__ 1008879
001008879 005__ 20240226075338.0
001008879 0247_ $$2doi$$a10.24435/MATERIALSCLOUD:ET-G4
001008879 037__ $$aFZJ-2023-02523
001008879 041__ $$aEnglish
001008879 1001_ $$0P:(DE-Juel1)157882$$aRüssmann, Philipp$$b0$$eCorresponding author$$ufzj
001008879 245__ $$aDataset of proximity induced superconductivity in a topological insulator
001008879 260__ $$bMaterials Cloud$$c2022
001008879 3367_ $$2BibTeX$$aMISC
001008879 3367_ $$0PUB:(DE-HGF)32$$2PUB:(DE-HGF)$$aDataset$$bdataset$$mdataset$$s1688475167_32637
001008879 3367_ $$026$$2EndNote$$aChart or Table
001008879 3367_ $$2DataCite$$aDataset
001008879 3367_ $$2ORCID$$aDATA_SET
001008879 3367_ $$2DINI$$aResearchData
001008879 520__ $$aInterfacing a topological insulator (TI) with an s-wave superconductor (SC) is a promising material platform that offers the possibility to realize a topological superconductor through which Majorana-based topologically protected qubits can be engineered. In our computational study of the prototypical SC/TI interface between Nb and Bi₂Te₃, we identify the benefits and possible bottlenecks of this potential Majorana material platform. Bringing Nb in contact with the TI film induces charge doping from the SC to the TI, which shifts the Fermi level into the TI conduction band. For thick TI films, this results in band bending leading to the population of trivial TI quantum-well states at the interface. In the superconducting state, we uncover that the topological surface state experiences a sizable superconducting gap-opening at the SC/TI interface, which is furthermore robust against fluctuations of the Fermi energy. We also show that the trivial interface state is only marginally proximitized, potentially obstructing the realization of Majorana-based qubits in this material platform.This dataset contains the data for the DFT-based calculations for interfaces between the s-wave superconductor Nb and the topological insulator Bi₂Te₃ which is discussed in the publication referenced below.
001008879 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001008879 536__ $$0G:(BMBF)390534769$$aEXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x1
001008879 588__ $$aDataset connected to DataCite
001008879 650_7 $$2Other$$adensity-functional theory
001008879 650_7 $$2Other$$asuperconductivity
001008879 650_7 $$2Other$$aBogoliubov-de Gennes
001008879 650_7 $$2Other$$atopological materials
001008879 650_7 $$2Other$$atopological superconductor
001008879 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b1$$ufzj
001008879 773__ $$a10.24435/MATERIALSCLOUD:ET-G4$$v2022.123
001008879 909CO $$ooai:juser.fz-juelich.de:1008879$$pVDB
001008879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157882$$aForschungszentrum Jülich$$b0$$kFZJ
001008879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b1$$kFZJ
001008879 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001008879 9141_ $$y2023
001008879 920__ $$lyes
001008879 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001008879 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
001008879 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
001008879 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
001008879 980__ $$adataset
001008879 980__ $$aVDB
001008879 980__ $$aI:(DE-Juel1)PGI-1-20110106
001008879 980__ $$aI:(DE-Juel1)IAS-1-20090406
001008879 980__ $$aI:(DE-82)080012_20140620
001008879 980__ $$aI:(DE-82)080009_20140620
001008879 980__ $$aUNRESTRICTED