001     1008879
005     20240226075338.0
024 7 _ |a 10.24435/MATERIALSCLOUD:ET-G4
|2 doi
037 _ _ |a FZJ-2023-02523
041 _ _ |a English
100 1 _ |a Rüssmann, Philipp
|0 P:(DE-Juel1)157882
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Dataset of proximity induced superconductivity in a topological insulator
260 _ _ |c 2022
|b Materials Cloud
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Dataset
|b dataset
|m dataset
|0 PUB:(DE-HGF)32
|s 1688475167_32637
|2 PUB:(DE-HGF)
336 7 _ |a Chart or Table
|0 26
|2 EndNote
336 7 _ |a Dataset
|2 DataCite
336 7 _ |a DATA_SET
|2 ORCID
336 7 _ |a ResearchData
|2 DINI
520 _ _ |a Interfacing a topological insulator (TI) with an s-wave superconductor (SC) is a promising material platform that offers the possibility to realize a topological superconductor through which Majorana-based topologically protected qubits can be engineered. In our computational study of the prototypical SC/TI interface between Nb and Bi₂Te₃, we identify the benefits and possible bottlenecks of this potential Majorana material platform. Bringing Nb in contact with the TI film induces charge doping from the SC to the TI, which shifts the Fermi level into the TI conduction band. For thick TI films, this results in band bending leading to the population of trivial TI quantum-well states at the interface. In the superconducting state, we uncover that the topological surface state experiences a sizable superconducting gap-opening at the SC/TI interface, which is furthermore robust against fluctuations of the Fermi energy. We also show that the trivial interface state is only marginally proximitized, potentially obstructing the realization of Majorana-based qubits in this material platform.This dataset contains the data for the DFT-based calculations for interfaces between the s-wave superconductor Nb and the topological insulator Bi₂Te₃ which is discussed in the publication referenced below.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a EXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)
|0 G:(BMBF)390534769
|c 390534769
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a density-functional theory
|2 Other
650 _ 7 |a superconductivity
|2 Other
650 _ 7 |a Bogoliubov-de Gennes
|2 Other
650 _ 7 |a topological materials
|2 Other
650 _ 7 |a topological superconductor
|2 Other
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 1
|u fzj
773 _ _ |a 10.24435/MATERIALSCLOUD:ET-G4
|v 2022.123
909 C O |o oai:juser.fz-juelich.de:1008879
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157882
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2023
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
980 _ _ |a dataset
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21